EOTVOS LORAND UNIVERSITY
FACULTY OF INFORMATICS

INVESTIGATIONS ON SECURING
REPOSITORIES USING DIFFERENCE ANALYSIS
AND PATCH APPLICATIONS ON ENCRYPTED
FILES

SERES ISTVAN ANDRAS, M.ScC. ToM MATHIJS VAN ESSEN
EOTVOS LORAND UNIVERSITY COMPUTER SCIENCE
PROF.DR. ANDREAS PETER

UNIVERSITY OF TWENTE

DR. SERGE AUTEXIER

DFKI

BUDAPEST, 2021.

STATEMENT

OF THESIS SUBMISSION AND ORIGINALITY

I hereby confirm the submission of the Master Thesis Work on the Computer Science

MSec course with author and title:

Name of Student: Tom Mathijs van Essen
Code of Student: aiyf2k
Title of Thesis: Investigations on Securing Repositories using Differ-
ence Analysis and Patch Applications on Encrypted
Files.

Supervisor: Istvan Andrés Seres

at Eotvos Lorand University, Faculty of Informatics.

In consciousness of my full legal and disciplinary responsibility I hereby claim that
the submitted thesis work is my own original intellectual product, the use of refer-
enced literature is done according to the general rules of copyright.
I understand that in the case of thesis works the following acts are considered pla-
glarism:

e literal quotation without quotation marks and reference;

e citation of content without reference;

e presenting other’s published thoughts as own thoughts.

Budapes

Abstract

Collaborating on code projects is popular and many corporations rely on this for

their daily process. Commonly, sharing source code in such a manner is done via

repositories that are part of a[Version Control System| (VCS)). Such a system can be

the target of an attack or can leak the code in another way. This work investigates
the tools needed to create a secure repository.

To enable a secure repository this work introduces the notion of securely compos-
ing patch files — sCompose — and proposes approaches to the problem. We introduce
the Secure [Longest Common Subsequence| (LCS)) functionality — sLCS — and suggest

functions to solve the problem. These approaches to sLCS are not practical in a
real-world scenario due to the space complexity. Finally, we introduce the notion of

secure difference analysis with the function sDiff and sDiff3.

Acknowledgement

I owe a debt of gratitude to my supervisors, Andreas Peter, Serge Autexier, and
Istvan Seres. They provided me with fresh ideas and encouraged me to tackle the
challenges that we crossed along the way. When stress threatened to take the best of
me, our meetings — or a linked tweet — put my mind at ease. Our discussions helped
me gain insight into the world of research and pushed me to keep moving forwards.
In particular, I am grateful for the exciting assignment made possible by Andreas
and Serge.

Through the past half-year, the world was full of uncertainties. For me, this meant
I did not know in which country I would spend the final months of my Master. While
this had its aggravating moments, these were fleeting. For this, I have all my friends
to thank. Thank you to all my friends in Budapest and the Netherlands for making
me feel that where ever I ended up, I would be welcome.

In my crusade to finish my thesis, I appreciated the interest of the members of
Dispuut Yorinf and Huize Boslust. In particular, I acknowledge the help and support
I received from Vincent Dunning and Mark 't Hart. Discussions with you kept me
motivated and helped me look at what I could do instead of what I could not do.

Esther, Peter — mom, dad — Stef; thank you! Not only for the past six months,
thank you for the past 23 years and a bit. Sometimes you were a challenge to deal
with; most of the time, I was a hassle to manage. Thank you for sticking it out with
me. Hopefully, we will have many more years to go!

Finally, I thank all the people I have forgotten to mention by name, my apologies.
If you made me smile, distracted me, or inspired me over the last half-year, thank

you.

i

CONTENTS

Contents

(1__Introductionl X
(.1 Motivationl. xii
(1.2 Research Questions and Objective] xiii
[L3 Contributiond XV
(.4 Structurel XV

2 Background and Preliminaries| xvii
2.1 Sequence|. xvii
[2.2 Longest Common Subsequence|. Xix

2.2.1 LCS using "Four Russians"| XX
R Tl xxii
[2.4 Difference Analysis|o xxiii
[2.4.1 Three-way Difterence Analysis| xxiii
2.5 Patch Files] XXV
251 Retainl XX1V
252 Tnsertl XXV
[2.5.3 Composition of Patch Files[. XxXVi
[2.5.4 Effective Patch and Composition| XxVii
2.6 Delannoy Number|. XxVvii
[2.7 Encryption| xxviii
[2.8 Homomorphic Encryption] xxVviil
2.9 Security Model|o XxViii

[3 Secure Patch Composition| XXXi
[3.1 Security Setting and Ideal Functionalityl xxxii
[3.2 Single Server| xxxiii

v

CONTENTS

[3.2.1 Hiding Line Content|
[3.2.2 Hiding All Content|
[3.2.3 Analysis|
[3.3 Non-Colluding Two-Servers|
[3.3.1 Hiding Line Numbers|.
[3.3.2 Hiding File Sizelo
[3.3.3 Composition|.
[3.3.4 Analysis|o
B4 Conclusionl.
rivately Aligning Sequences
[4 Pri ly Aligning S |
[4.1 Security Setting and Ideal Functionality]
4.2 Secure LCS Calculation|
[4.3 Sequence Encryption|o
4.4 Interactive Protocoll.o
[4.4.1 Interactive Equality|. 0.
442 Protocoll
Ills[i Ilgzll_]]llszlii!:l i!g: l lg!!!z!:!zll
[4.5.1 Non-Interactive Equality]
452 Protocollo
[4.6 Analysis|
[4.6.1 Timing|.
[4.6.2 Learning from kquality|.
M7 Conclusionl.
[5 Secure Difference Analysis|
[>.1 Ideal Functionality]
6 Conclusioni
6.1 Future Workl.

liii
liv
v
lvi
lviii
Ix
Ix

Ixi

Ixiii

Ixiii

LIST OF FIGURES

List of Figures

[2.1 Path depiction, and table showing the length, of LCS(kitten, sittin). |
[We highlight the path we take in the table of the intermediary lengths.| xx
[2.2 Depictions of the necessary information in the full dynamic program- |
| ming solution in (a) and the "Four Russians" approach in (b)| xxi
[3.1 Depiction of different scenarios in a|Version Control System| with re- |
| gards to branching. (a) shows the start of a branch and the parallel |
| existence of the main branch and feature branch. (b) depicts the merg- |
| ing of a feature branch with the main branch. (c) shows the same tree |
| and feature as (b) with a squashed commitment.|. xxxi
[3.2 Ideal Functionality for the Secure Compose function.| xxxXiil
(3.3 Information of two consecutive patch files held by S = {Sp, Sp}.| . . . xli
[3.4 Patchy s based on Patchy _, s and Patchy,_, s as composed by S| . . xlii
[3.5 Depiction of the Secure Composition Protocol.| xliv
[3.6 Visualisation of composition of two padded permuted patch files — |
| Pad(Patch’";*), Pad(Patch,“"). It is the case that |Ret, ;| > |Rety_.| |
| for [Pad(ftet,)| — [Pad(Ins,,,)| — [Pad(Insyc,)| — [Pad(Ret, ") = |
| 5. We see that since the inequality holds the composed Ret function |
[shrinks, while the composed Ins tunction grows by the same amount. xlv
[4.1 Ideal Functionality for the Secure Longest Common Subsequence |
[function 1
4.2 Depiction the lower and upper bound of the D(m,n)| lix
[>.1 The Ideal Functionalities for the Secure Difference Analysis. (a) gives |

the Ideal Functionality for Secure diff. (b) gives the Ideal Function- |

ality for Secure diff3.| Ixiv

vi

LIST OF TABLES

List of Tables

[3.1 Timing results in seconds for the single server setting. Note that we |

[time the composition so we disregard encryption or creation time.| . . xxxvi

[3.2 Timing results in seconds for the non-colluding two-server setting. |

| Note that we time the composition so we disregard encryption time.| . xlvi

[3.3 Summary of sCompose functions and their properties. We show the |

| protocols suggested in Sections|3.2land 3.3[. xlviii

[4.1 "Timing results in seconds for standard [Longest Common Subsequence| |

[while storing all possible path. The inputs are two completely distinct |

[strings. In the table, m gives the length of the first input and n gives |

| the length of the second input. M £ indicates a memory error.| Ix

[4.2 Summary of sLCS tunctions and their properties. We compare Proto- |
| cols[2L 8L and |4l Ixii

vil

Acronyms

Acronyms

BBF Basic Block Function. xxiil
CVS Concurrent Versions System.

FHE Fully Homomorphic Encryption.

GCD Greatest Common Divisor. [\

LCS Longest Common Subsequence. [i, [vii] vl fvid] xx], xxvl,
Rexevidl, v, i, e, kT, I [[iv, [V, i, [Ix], [Ixl, [Ixait], fxv], xovid)

LD Levenshtein Distance. kil

OS Operating System.

PHE Partial Homomorphic Encryption.

PKEET Public Key Encryption with Equality Test. [[v]

SCCS Source Code Control System.

VCS Version Control System. I, [, [xiil, [xiid]

viii

CHAPTER 1. INTRODUCTION

Chapter 1
Introduction

Traditional repositories allow multiple users to work together on a projects such

as source code. These repositories are part of a [Version Control System| (VCSJ).

These systems consist of patches that describe the changes from one file to the
next. The patches are part of commitments. Commitments contain meta-data about
the author, a textual description of the changes in the file, and the actual patch.

We create such a patch using difference analysis. A property of these patches is

that we can compose them. [Version Control Systems use this property to squash

commitments. This is a feature that helps maintain a repository and its readability.
Additionally, we can use difference analysis to combine multiple files into one file.

We refer to this process as merging documents, this feature is an important part of

[Version Control Systems.

Difference analysis of documents is a problem that presented itself during the
early development of computer languages and systems. Its applications include com-
paring lengthy outputs of functions, verifying checksums, and finding the changes
from one version of a document to the next. The latter functionality is important
in our application. Not only do we wish to determine the difference between two
files — this is useful in software updating through patches — there is also a need to
combine multiple files. Combining files is often referred to as merging, and it derives
its capabilities from difference analysis.

Throughout recent history, many tools for on difference analysis appearedlzlm.

'FileMerge: https://developer.apple.com/xcode/features/
2TkDiff: https://www.unix.com/man-page/linux/1/tkdiff/
3Kompare: https://apps.kde.org/nl/kompare/

https://developer.apple.com/xcode/features/
https://www.unix.com/man-page/linux/1/tkdiff/
https://apps.kde.org/nl/kompare/

CHAPTER 1. INTRODUCTION

These tools all serve the same purpose, that of difference analysis between two
documents. This thesis follows the work of Autexier [Aut15|. This work introduces
a new aspect to difference analysis — namely, similarity instead of equality. The
difference analysis in the methods of Autexier resembles the difference analysis as
performed by the diff function found in Unix [Operating System| (OS)), introduced
in the 5% version of said [0S| The work of Hunt and Mcllroy forms the basis of this
function [HMT75).

Using the diff function, we can create descriptions from one file to another.

We can perform the transformation based on a description automatically. We call
such a description a patch. Storing these patches leads to a system that keeps track
of each iteration of a piece of software. This history of revisions is aptly named
the |[Source Code Control System| (SCCS)). This leads to such as
[Versions System| (CVS)), BitKeeper, and Git [FSF08, Bon15| [CS14].

The patch created by diff contains the deleted lines from the first file, the lines
added to the second file, and the changed lines from the first file to the second.

Formatting these three different changes in a certain way leaves us with an edit-
script. An edit-script describes the steps we need to take to edit one file to match
another file. Only registering the changes leaves us with smaller files to transmit
compared to sending the whole new file.

The alignment of two documents forms the basis of difference analysis. This
alignment allows us to pinpoint the differences between two files efficiently. The
alignment method is much like the Levenshtein Distance| (LD]) [Lev66]. The[LD]gives
the number of deletion, changes, and insertion to transform one string into another.
The difference between the [LD] and the alignment method is that the alignment

method does not consider changes of elements, only additions and deletions. This
translates to [LD] by setting the cost for changing higher than the summed cost of
an addition and a deletion. This cost division leaves us with a scenario in which
the algorithm will never pick changing a character as it is cheaper to delete the old
element and insert the new one. This method almost directly resembles the
[Common Subsequence] (LCS) problem. Solving the [LCS problem leaves us with one

or more sequences present in both the input sequences. These sequences are the

most extended sequence present in both the input sequences. Note that there is a
difference between substrings and subsequences. Substrings require elements to be

subsequent in the sequence. In the case of the [LCS| only the relative ordering is

x1

CHAPTER 1. INTRODUCTION

important, not the direct relation.

Once we have the [Longest Common Subsequence| between two sequences, we can

construct a diff output. First, we determine which file is the origin file and which
file is the target file. The deletions are those values present in the origin file and
not in the [LCS The insertions are the elements in the target file but not in the
[LCS| The retentions are the lines that make up the [LCS| between the origin and the
target. We observe that, given the origin file, we can derive the deletions from the
retentions and vice versa. Considering the retentions instead of the omissions allows
us to compose patch files. This feature is essential in squashing commitments.

Besides the diff function we also introduce the diff3 function. diff3 also
considers, besides the two input files, a common origin file. This common origin file
is the origin for both the other input files. An origin file of a file is the previous
version of a file. Sharing an origin file means that two files, a and b, are adaptations
of the same document o.

The output of the diff3 function is the edit-script that describes a transforma-
tion of 0. We transform o to include the changes in a and b. Note that this function
can result in conflicts. If @ and b change the same value, we can no longer determine
which change is the correct one without making assumptions about the underlying
files. The uncertainty about the correct course of action results in a merge conflict.
Merge conflicts can present themselves in a repository and require human interven-
tion to solve.

We investigate how we can translate these functions to their secure counter part.
We introduce the notion of Secure diff, diff3, and [LCS| - sDiff, sDiff3, sLCS — that
are functions over files. Furthermore, we introduce Secure Compose — sCompose —
a function over patch files. These functionalities combined enable a repository to
be secure. We deem a repository secure if it can perform all the tasks of a normal

repository without learning about the content of the repository.

1.1 Motivation

Modern applications of difference analysis mostly find their merit in [Version Controll
[Systemp. Protecting the source code of a project can be a vital aspect of a business,

whether to enforce their Copyright or to slow down competitors in developing com-

peting products. However, large corporations often have multiple developers working

xil

CHAPTER 1. INTRODUCTION

on the same source code. Such a scenario lends itself to [VCY| perfectly. There are
many options for such a system; all can have drawbacks.

GitHub allows its customers to hide its repositories from the public for a relatively
low pricelz_f]. However, this comes at the cost of the necessity to trust GitHub and,
by extensions, all its parent or sibling corporations. Other solutions exist where a
company does not necessarily need to trust the provider of the VCS|software. GitLab
offers hosting plans, but one can also host an instance of the software developed by
GitLab on their servelﬂ Since GitLab is open source, a company can theoretically
trust that its code is safe. However, this requires the corporation to have enough
knowledge, time, and resources to host and maintain their server. Hosting a server
can get costly.

History knows examples of source code leaking unintentionally [Cim20), War17].
Hackers can also target a server to obtain source code, as happened to CD Projekt
Red in February of 2021. This targeted attack left the attackers with the source
code of popular video games Witcher 3 and Cyberpunk 2077|Sta21]. In January of
the same year, Nissan found themselves the victim of source code leaking [Cim21].
However, this was not a targeted attack. It was a misconfigured Git server. By using
a standard username and password, their repositories were open to the public. These

situations illustrate how we can gain security by protecting centrally stored data.

1.2 Research Questions and Objective

This thesis investigates how we can create technologies that allow the existence
of secure repositories. These technologies include the creation — using diff — and
composition of patches, and the merging of files using diff3. We investigate the
applicability of cryptographic techniques in the problems of automatic difference
analysis, and storage and composition of patch files. We say that a repository is
secure if the repository does not learn anything about the data it is hosting while
still performing the tasks we require from a regular [VCS]

We specifically look at the creation of patch files using diff function inspired

by the work of Autexier [Autl5] and the composition of created patch functions.

“https://github.com/pricing
Prices: https://about.gitlab.com/pricing/ and Self-Hosting: https://about.gitlab.
com/install/

xiii

https://github.com/pricing
https://about.gitlab.com/pricing/
https://about.gitlab.com/install/
https://about.gitlab.com/install/

CHAPTER 1. INTRODUCTION

We define three research questions we investigate in this thesis. The first is:

RQ1. How can we secure a repository using difference analysis and patch

composition over encrypted documents?

We split this research question into two subquestion that specify the techniques we
wish to investigate. We discuss these two subquestion individually below. The first

subquestion is:

RQ1a. How can we compose patch files constructed over encrypted doc-

uments?

This first subquestion concentrates on the ability to develop a function that can
compose patch files in a secure repository. This means that the server hosting the
repository does not learn the content or nature of the two patches we compose or of
the resulting patch. We investigate this question in Chapter [3

The second subquestion to RQ1. is:

RQ1b. How can we perform difference analysis, including Diff and Three-
Way Diff, over encrypted files?

This question focuses on the functionalities as posed by Autexier in [Autl5]. We
investigate how to obtain these functionalities between encrypted documents. The
objective here is to keep the information held by individual parties hidden from
other participants. We investigate the underlying alignment of sequences used in
these functions in Chapter 4| and discuss the functionalities themselves in Chapter
[l

We pose two research questions to evaluate the performances of the procedures
proposed under the first research question. These two questions test the feasibility
of the methods developed under RQI.

RQ2. What are the computational and communicational complexities of
the algorithms developed under RQ1?

This question helps provide insight in the theoretical bounds of the suggested func-
tions. This will help us determine whether it is feasible to use the propose method

in practice.

X1v

CHAPTER 1. INTRODUCTION

RQ3. What are the runtimes of the under RQ1 developed algorithms in

realistic scenarios?

We test the applicability of the proposed methods. We then translate this to a
realistic setting and evaluate whether the proposed method can offer the desired
functionality.

The chapters that describe the answers to RQ1a and RQI1b also answer R(Q)2

and RQ)3 for their respective function.

1.3 Contributions

We introduce the concept of Secure Compose — sCompose — for patches and suggest
approaches that reveal minimal to no information. The former results in effective
patch files. The latter does not. An effective patch file is a patch file that merits its
use. The use of a patch file is warranted if it is more practical to send a patch file
than to send the target file of the patch.

We introduce the concept of Secure [Longest Common Subsequence]— sLCS. sLCS

is a function that takes two hidden sequences and determines the [LCS| between the
two sequences. We suggest an interactive approach where the party executing the
function and the receiver of the result communicate. Furthermore, we suggest non-
interactive approaches that let the executor of the function determine the result on
its own. These approaches are purely theoretical as the complexity does not allow
them to be practical in real-world scenarios.

Finally, we introduce the notion of Secure Difference Analysis for the functions
diff and diff3. These functions rely on sequence alignment. This sequence align-
ment is the [LCS| Since we do not propose a feasible sLCS function, we do not
propose methods for sDiff and sDiff3. We only introduce both concepts and their

desired functionality.

1.4 Structure

The remainder of this thesis is structured as follows. We start by providing back-
ground and preliminary information in Chapter 2l We continue by describing and

introducing Secure Patch Composition in Chapter 3 Chapter [4] introduces and anal-

XV

CHAPTER 1. INTRODUCTION

yses the Secure [Longest Common Subsequence| function. We discuss the Secure diff

and diff3 and their feasibility with regards to a secure repository in Chapter 5| Fi-

nally, we conclude and discuss future work in Chapter [6]

Xvi

CHAPTER 2. BACKGROUND AND PRELIMINARIES

Chapter 2
Background and Preliminaries

This chapter describes background knowledge and provides definitions and nota-
tions we use throughout this thesis. We introduce definitions of files and patch files.
These are important when we discuss creating and composing commitments in a se-
cure repository setting. Furthermore, we introduce the concept of sequences and the
[Longest Common Subsequence] (LCS). The[LCS|aligns two sequences. The alignment
is essential in the diff and diff3 functions we introduce in this chapter. To create

secure repositories, we introduce cryptographic notation and highlight
morphic Encryption| (FHE|) as a tool. Additionally, we describe our security setting

in a general sense. Finally, we conclude by providing an overview of all notation for

convenience.

2.1 Sequence

A sequence is an indexed set of elements from a specific domain. We use sequences
to define files. This is important since we will require alignment between files for the
diff and diff3 functions. Formally, we use the definition for a sequence as provided
by Autexier [Autl5].

Definition 2.1.1 (Sequence [Autld, p. 4]). Let I be a set of positive natural num-
bers and s;, i € I be elements of a given domain D. Then s := (s;);c; denotes the
sequence s;, . ..s;, such that |[I| = n and for all 1 < k <[< n holds i, < i;. The

length of the sequence is the cardinality of /. The set of sequences is S.

A sequence has a length. We use cardinality notation to indicate the length of a

Xvil

CHAPTER 2. BACKGROUND AND PRELIMINARIES

sequence. For sequence s, |s| denotes the length of s.

We can perform operations on a sequence. Let D be the domain of sequence
s, where the index set of s is I;. For e € D, s||e denotes the concatenation of the
element e to sequence s. The resulting sequence is r := s;, ... s; e. The new sequence
r has the associated index set I.. The index of the new element e is greater than
any index present in [,. This is the case since we concatenate an element to the
end of s thus the index cannot be smaller than any other element by definition. For
the index of e in I, it holds that ¢, > max I,. For sequences where we maintain a
consecutive index set, I, = {1,...,]|s|}, the index of e, i, € I, is |s| + 1.

Given a sequence, we wish to determine the last element of the sequence. This
last element in a sequence s is the element with the greatest index in the associated
index set. Thus Last(s) = Spmaxr, this holds for I, # 0. If I, = () the sequence is
empty and there exists no last element. Besides the last element we also define the
operation for the initial elements. The initial elements are all elements in a sequence
besides the last element. Thus, Init(s) = (s;)icr,\{max1,}- Finally, as an operation we
define the predecessor of an index. The largest predecessor of element ¢ € I, is the
largest number ¢’ € I such that i < i. We note this as Predy, (i) = i’ if such a value
exists. Note that in the case of consecutive index sets, {1,...,n} for some n > 1
the predecessor of 7 is ¢ — 1 for all 1 < ¢ < n. The smallest element in the index set,
min /,, does not have a predecessor.

A subsequence, r, of a sequence, s is a sequence such that we can derive r
from s by deleting some or none of the elements from s. Note that the ordering of
the elements is essential. That is, the elements of the subsequence have the same
relative order as the original sequence. However, it does not matter if elements in
either sequence are subsequent. This means that for i,7" € I, note that by definition
i,i" € I, Pred;, (i) = ' does not imply Pred;, (i) = i’ and Predy, (i) = ¢ does not
imply Pred;, (i) = i’. We note that r is a subsequence of s using the subset notation,
r C s.

Substrings are subsequences where the elements of the subsequence are subse-
quent. A substring for the sequence s from index m € I, till n € I, is the sequence
r such that for 7 := (s;)ic{alzer, and m<a<n}- We denote this as s™". A prefix is a

substring starting at the minimal value of I,. As a shorthand for s™™s)" we use s”.

XViil

CHAPTER 2. BACKGROUND AND PRELIMINARIES

2.2 Longest Common Subsequence

Autexier uses the [Longest Common Subsequence (LCS)) to align two sequences. The

[LCS|function with two input sequences gives the most extended sequences present in
both the input sequences. Thus we can have multiple [LCS| sequences. We determine
candidate [LCS| sequences based on the [LCS| present in the initial elements of both
input sequences. maxj, determines the longest sequences of the input sequences and
outputs these sequences. If two candidate [LCS| sequences are of equal length, both
remain candidates. More formally, we have Definition

Definition 2.2.1 (Longest Common subsequence (LCS)). For two sequences, given

as s 1= (8;)ier, and 7 := (r;);er,, there are one or more [Longest Common Subse-|

quences. These are given as:

0 ifl,=0orI, =0

LCS(Init(s), Init(r)) || Last(s) if Last(s) = Last(r)
LCS(s, Init(r))

. len{ LCS(Init(s),r)

LCS (s,r) =
if Last(s) # Last(r)

The output of the[LCS|is a sequence. Note that in the case of |[LCS(s, Init(r))| =
|ILCS(Init(s),)| we retain both sequences as candidates. This means that we con-
tinue the procedure with two possible [LCSE.

The [LCS] problem has an optimal substructure. A problem with an optimal
substructure can find its optimal solution by solving its subproblems. This property
helps determine if a dynamic programming approach is helpful to solve the problem.
Since the [LCY| problem has such an optimal substructure, we see that an approach
to solving the problem is dynamic programming. In this approach, we construct a
dynamic programming table where one sequence aligns with the columns and the
other sequence with the rows of the table. Using this layout, we can fill the table by
following the definition of the LCS.

We can view the [LCS|as a path over the dynamic programming table. The route
can take three possible steps from one table entry to the next. It can take a diagonal
action, a horizontal step, or a vertical step. The last two steps occur if the two input
sequence elements associated with the current table entry are not equal. The third

line of Definition [2.2.1] depicts these steps. The diagonal step is the case where the

XX

CHAPTER 2. BACKGROUND AND PRELIMINARIES

k 1t t e n s S

r k 1 t t e n s
S 0 0 00O 0O 0 0 O
; s 00 0 0 0 0 0 1
. i 0 0 1 1 1 1 1 1

t 00 1 2 2 2 2 2
t t 00 1 2 3 3 3 3
i i 0 0 1 2 3 4 3 3
n n 0 0 1 2 3 3 4 4
g g 0 0 1 2 3 3 4 4

Figure 2.1: Path depiction, and table showing the length, of LCS(kitten, sittin). We
highlight the path we take in the table of the intermediary lengths.

elements are identical, the second line of Definition [2.2.1

With this pathing we can derive the [LCY based on a table of the lengths of
the intermediary [LCS| values. An example of this is given in Figure 2.1} This figure
depicts the path and a table containing the length of the LCS.

Under certain conditions, we can improve the complexity of the [LCS| procedure.
Given a fixed alphabet X, we can precompute blocks of the [LCS| This result in a
dynamic programming table of size n - logn instead of n". Masek and Patterson

describe this approach where they use the Four Russian Technique.

2.2.1 LCS using "Four Russians"

The methodology proposed by Masek and Patterson [MP80] adopts the dynamic
programming variant to include a pre-computed look-up table based on the Four
Russian technique. We use the same notation and process as [FGM09| to address
this approach. Masek and Patterson create t-sized blocks that contain all necessary
information. Figure depicts the normal dynamic approach and the four Russians
approach. We observe that the blocks allow us to eliminate entries from the table.
Commonly, for input of size n we choose ¢ = log, n.

The dynamic programming table based on sequence s indexed by ¢ € I, and

sequence r indexed by j € I, is given by L. We denote the boundaries of the window

XX

CHAPTER 2. BACKGROUND AND PRELIMINARIES

S S
r k 1t t e n r k 1t t e n

0O 000 0 0 0 0O 000 0 0 0
s 00 0 0O O 0 O s O 0 0
i 00 1 1 1 1 1 i 0 1 1
t 0 01 2 2 2 2 t 00 1 2 2 2 2
t 0 01 2 3 3 3 t 0 2 3
i 00 1 2 3 3 3 i 0 2 3
n 00 1 2 3 3 4 n 0 0 1 2 3 3 4

(a) (b)

Figure 2.2: Depictions of the necessary information in the full dynamic programming
solution in (a) and the "Four Russians" approach in (b).

starting at ¢, j as:

N(i,j) = (Lli, g}, L[i,j + 1], -+, L[i, j + 1])
W(i,j) = (L[, 5], Lli + 1, 4], - -+, Lli + ¢, j])
S(i,7) = (L[i +t, 4], Lli +t,5+1],--- , Lli + t,5 + t])
E(i,j) = (L[i,j+t],L[i+1,j+t],--- ,Lli +t,7 +t])

Based on N (i, j) and W (i, j) we create two offset vectors. These result in I (4, j), I2(i,j) €

{0, 1}

o 0 for k=1
1(6,) [k] = N(i,j)[k] = N(i,j)[k —1] forl<k <t

0 for k=1

Iy(i, j) k] = { Wi, j)[k] —W(i,j)[k—1] forl<k<t

The offsets are binary vectors, as the most significant difference between any two
neighbouring elements will be one. This follows from the fact that we can add at
most one element from one table entry to the next.

The main observation is that the vectors E(i,j) and S(i,7) are completely de-
pendent on A% B% . I(i,7), I5(i,7), and the initial values L[i, j].

poel

CHAPTER 2. BACKGROUND AND PRELIMINARIES

To this extent we can describe E(i,7) and S(4, j) as a function of these elements.

This function is referred to as the|[Basic Block Function| (BBF]) and is given as follows

[FGM09):

BBF(AZ’],BZ’J, 11(173)712<27j)7 L[Zaj]) = (E(Z7])7 5(27])) (21>

We now pre-compute all possible ¢ x ¢ blocks. We do this by considering all
possible t sized sequences and all possible offset vectors. This means, for domain D,
we have | D|* possible sequences of length ¢ and we have 2 possibilities for the offset
vector. This means in total we have |D|?*2%! entries in the lookup table we create.
As a value for L[i, j] we use 0 resulting in bff(-,- -, -,0). Note that we can adapt
this value to any desired constant by adding it as bff(-,-,-,-,0) 4+ C = bff(-, -, -, -, C).
This constant will add the actual value of the first entry to the precomputed block.
The combined precomputed block and the actual value result in the correct output
of the block.

Once we have the look-up table, we can construct L based on the t x t blocks.
We combine the first row and column with the input sequences and determine the
corresponding pre-computed block. We can correct any value in this block by adding
the value L[i, j]. Recall that we initialised the blocks with L[i, j] = 0. The pre-
computed block leaves us with two new vectors, namely E(7,j) and S(i,j) using
these new vectors we can determine I1(i + t,j) and I5(i,j + t). These new offset
factors, combined with the already known data, allows us to determine new blocks.

We can repeat this until we arrive at L[m, n].

2.3 File

A file is a sequence of lines. The lines of a file consist of characters from an alphabet
Y. For example, 3 can be all utf-8 characters in the case of a utf-8 encoded file.
The domain of a file f, given as Dy, is the set of possible strings we can construct
based on X. In other words, D; = ¥*. Since f is a sequence of lines, we have the
index set I;. A file uses line numbers to index the lines. These line numbers start at
1 for the first line, and the final line number is at the very end of the file. Thus, the
final line number is equal to the length of the file, | f|. Combining the start index with

the final index result in a strictly increasing consecutive index set of integers starting

Xxil

CHAPTER 2. BACKGROUND AND PRELIMINARIES

at one and ending at the length of the file. In other words, I; = {1,...,|f| }, where
| f| denotes the total number of lines in a. This result in f := (f;)ics, for f; € ¥*.

2.4 Difference Analysis

We can analyse the differences of two files. Given files a and b, the difference function
describes the deletions, insertions, and replacements we need to perform to obtain
b from a. We can derive the different operations based on LCS(a,b). Namely, the
deletions are all values present in a and not in LCS(a, b), while the additions are the
elements present in b and not in LCS(a,b). Note that we derive the replacements
by taking the intersection of those two operations. For patch files, we will not use
deletions. We, instead, will use retentions and insertions. This means that we use
the elements in LCS(a, b) as retentions, and the elements in b and not in LCS(a, b)

as insertions.

2.4.1 Three-way Difference Analysis

Three-way difference analysis aims to determine the difference between the files a and
b with their common origin 0. Common origin means that a and b are independently
constructed files both based on file 0. Using the three-way difference, we can build
an edit-script that includes current information from all files.

To obtain this edit-script, we first need to align the three files. Autexier does
this based on the LCS(a,b) [Autl5]. Autexier aligns the two sequences that derive
from o. After the sequences are aligned, they determine the conflicts between a and
b. Conflicts between a and b are those elements that are adjusted by both a and b.
Since there are two valid new values for these positions the algorithm can no longer
determine which value is the correct one.

Besides the conflicts, the function determines the values that a and b change,
delete, or insert that are not part of a conflict. The non-conflicting data can directly
be part of the edit-script since these values are adaptation to the origin file o that
should be part of the new file.

This function result in an edit-script that describes the merging of a and b
into their common origin o. This edit-script may contain conflict, we refer to these

conflicts as merge conflicts.

Xx1il

CHAPTER 2. BACKGROUND AND PRELIMINARIES

2.5 Patch Files

We use the difference between two files to determine a patch file from one file to
another. That is, the difference serves as a description to transform file a to file b.
We describe a patch file as two functions. These functions are the Ret and Ins

function. We denote a patch file from a to b as Patch,_, = (Retq_p, InSa—p).

2.5.1 Retain

The retain function, Ret, is a partial function that works on the index set of b, I.
Ret describes the lines that are present in both the origin file a and in the target file
b. The function receives an input line number from file b and gives the corresponding
line number in «a if such a line number exists. It does so based on a link function.
Lics(ap),: (i) € It describes this link function for i € Ir,cg(p) and ¢ is either a or b.
The link function ensures that the elements in the are associated with indices

of the original sequences. For any given [Longest Common Subsequence there might

be different possible embeddings. We do not concern ourselves with the optimal
mapping; the link function encompasses this property. The link function receives an
index from the [LCS| and links this to an index in one of the two super sequences.

The link function ensures that linking the index allows all other indices — trailing
and preceding — to associate with an index correctly. This means that for any given
index in the index set of the [LCS] 4, and its associated index, j, in the index set of
the supersequence a, it must hold that for all indices ¢’ € I,cg(qp) Where 7" < i there
is an associated index j' € [, such that j* < j. The converse holds for ¢" > i and
J" >

More formally, for i € Iycgap With minjey, such that LCS(a,b); = a; and
LCS(a,b)! C @/ and maxj¢;, such that LCS(a,b); = a; and LCS(a, b)"FS@d)l C
a’"1el we note that the linked index can be any value between these two extremes.
Thus, for Lycs(ap),q(i) € I, it holds that j < Lycg(ap),q(i) < j'. Note that a substring
is a sequence. Recall we use LCS(a, b) C a to denote that LCS(a, b) is a subsequence
of a.

Furthermore, the link function ensures that the order of the elements is proper.
Proper ordering means that we have maintain the relative order of the sequences.

To ensure this is the case we introduce one more property of the link function. The

XXiv

CHAPTER 2. BACKGROUND AND PRELIMINARIES

link function ensures L(i) > L(4¢') if and only if i > ¢, where 7,i" € Ijcg(p) and
L(i), L(i") € I,.
Using the link function to link the indices in the to its two super sequences

leads to the following Domain and Image for the Ret function;

Dom(Ret) = { Lrcs(an) b(i) | i € TLcsap) } (2.2)
Im(Ret) = {LLCS(a,b),a(i) | € Tnes(an) } (2.3)

Note that |Dom(Ret)| = |Im(Ret)| and that the relation, as described, is bijec-
tive.

This function does not only describe the lines we retain; it inherently describes
the deletions as well. Namely, those line numbers in a that do not map to a corre-
sponding line number in b are the line numbers of deleted lines from a. The latter
assertion means we could describe a patch file as a combination of deletions and
insertions. However, it will become clear that we require insertions and retentions

for the composition of patch files.

2.5.2 Insert

The insert function describes the remaining lines, if any, that are present in the
target file b but not in the origin file a. To this extent, upon receiving a line number
in b, it outputs the new content of that line if it exists. This result in the following

Domain and Image;

Dom(Ins) = I, \ Dom(Ret) (2.4)
Im(Ins) = b\ LCS(a,b) (2.5)

Since a file is a sequence with a strictly increasing consecutive index set, we can

determine the domain based on the file length in the given way.

XXV

CHAPTER 2. BACKGROUND AND PRELIMINARIES

2.5.3 Composition of Patch Files

We can compose two patch files that are created chronologically. This means that
for files a, b, ¢, and d with the patch files Patch,_,;,, Patch,_,., and Patch._,4; we can
compose Patch,_,;, and Patch,_.. resulting in Patch,_,.. We cannot compose Patch,_.;
and Patch._.4 as the target file for the former and the origin file for the latter differ.

To create Patch,_,. based on Patch,_,; and Patch,_,. we need to define the func-

tions Ret,_,. and Ins,_,.. We start with Ret,_,..

Composed Retain

The values that we retain from file a to ¢ are those values that we retain from a to
b and from b to c. Note that if we do not retain the value from a to b and insert it
again in the same relative line from b to ¢, we do not observe this as a retention in
the composition of patch files.

This functionality is encapsulated in the composition of the two known Ret

functions and is given as
Ret, . = (Rety_yp 0 Rety) (2.6)

Note that we first apply Rety_.. This is in line with the function definition as
Rety_,. is a partial function over I. to I, and Ret, _,; is a partial function over I, to
I,. Thus, the new Domain of the function is {i | i € I., Rety (i) € Im(Rety_.) N
Dom(Ret,)} and the Image is {Ret, (1) | i € Im(Rety.)}.

Composed Insert

In the case of Ins,_,. we need to define two cases. The first case is the insertions
from b to c. These insertions are part of the new insert function as they end up in
the final file and are not part of the Ret,_,. function.

The second case are those values that are inserted from a to b and are retained

from b to c¢. This results in the following function;

Tns _]nsa—ﬂ) o Retb—)c (2 7)
a—c In$b_)c .

XXV1

CHAPTER 2. BACKGROUND AND PRELIMINARIES

The domain for Insert, . is {i | i € I., Rety.(i) € Im(Rety_,.) N Dom(Ins,)} U

Dom(Insy_.).

2.5.4 Effective Patch and Composition

An effective patch file warrants its use. If a patch file is more extensive than its target
file, it is rendered ineffective, since at that point, we might as well send the target
file itself. In the case of patch composition, we consider one more aspect. While a
composed patch file may have a greater length than the target, the composition
can also combine multiple patch files. Combining multiple patch files can lead to a
composed patch file that is longer than the target file. However, it is shorter than
the concatenation of the patch files. Since it is shorter than the concatenation of the
original patches, we say that the composition is effective.

We say a patch file is effective if the size of Patch,_,; is smaller than the size
of b. We say a patch composition of file set P = {Patchy,_,,...,Patch;, ,_, }
is effective if [Patchy, [< > cp|p|, where Patchy, ., is the composition of all
patches in P.

2.6 Delannoy Number

The Delannoy number derives its name from Henry Delannoy, an amateur mathe-
matician [BS05|. Delannoy numbers describe all possible paths from the origin point
to the opposite corner of a rectangular grid [Sul03|. The size of the grid is (m,n)
where m is the size of the x-axis and n the size of the y-axis. The possible steps
to move from one coordinate to another coordinate are diagonal, horizontal, and

vertical.

Definition 2.6.1 (Delannoy Number). The Delannoy Number represent all possible

path from the origin (0,0) to the coordinate (m,n). The function is given as;

min(m,n) m+n— m
D(m,n) = Z (* k) < L) (2.8)

k=0 m

The possible steps the Delannoy number considers are the same as those taken

in the We will use this number in Chapter 4] to show the number of possible

XXVvil

CHAPTER 2. BACKGROUND AND PRELIMINARIES

routes we can take to arrive at a position in the [LCS| dynamic programming table.

2.7 Encryption

We use different kinds of encryption. We use public- and symmetric key schemes in
this thesis. This section introduces the symmetric system and its notation.

We use AES encryption in Galois/Counter Mode [DBNT01, [Dwo07|. This en-
crypts a message m using a key k£ and Initialisation Vector I'V. We denote the AES

encryption of m under k using IV as AESLY (m).

2.8 Homomorphic Encryption

We use homomorphic encryption to perform operations over encrypted data. The
goal of homomorphic encryption schemes is to allow arbitrary computations on en-

crypted data [ABCT15|. Schemes vary in the number of operations they support.

IPartial Homomorphic Encryption| (PHE|) supports one operation, addition or mul-

tiplication, [Fully Homomorphic Encryption| (FHE]) supports both operation. These

schemes have a public and secret key. Where the owner of the secret key can decrypt
the message encrypted under the associated public key.

Let &£ be a public-key homomorphic encryption scheme. It has associated public
and secret key given as (pk, sk). Let M denote the message space of £ the encrypt
function for m € M and random value r is given as E,(m;r) and the decrypt
function is defined such that Dgy(E,;(m;7)) = m. For party A using £ with public-
secret key-pair (ska,pka) and message m € M we use E4(m) as a shorthand for
Ey,(m;r) and D4(m) for Dy, (m).

Furthermore, for the scheme & and my,ms € M, we have the homomorphic
operation @ such that Dy (Ep(m1) @ Epr(me)) = my + my and the operation ®
such that Dy (Epr(m1) @ Epk(ma)) = my X ma.

2.9 Security Model

We define three sets of participants:

xXxVviii

CHAPTER 2. BACKGROUND AND PRELIMINARIES

Providers P The set of users that provide data. Data can either be a file or a patch
file. In the case of Secure [LCS|, diff, and dif£3 the input is a file. In the case

of Secure Compose the input is a patch file.

Servers & The set of honest-but-curious non-colluding entities that compute and

store the data.
Receivers R The set of users that can view the result.

It is possible that P = R. The cardinality of either set can be 1; this means that
a single entity can provide multiple data points if required and be the only receiver.

The goal is to develop a protocol that allows the entities in P to provide data
to S so that it can determine the result for the entities in R to retrieve. However,
S should not learn the outcome.

All entities in § are honest-but-curious. Honest-but-curious adversaries adhere
to the protocol but try to distil valuable conclusions from the information they
legitimately possess [Gol04) p. 603].

Note that no single entity in S should learn the result. We assume the entities
in § do not collude. Non-colluding honest-but-curious parties are parties that avoid
sharing useful information outside of the dictated protocol [KMRI11l p. 10]. A conse-
quence of non-colluding servers is that the combined information over all entities in
S could reveal the result. However, since the parties do not collude no single entity

can determine the output of the function.

XXIX

CHAPTER 2. BACKGROUND AND PRELIMINARIES

Notation Description
General

Lo, The set of integers modulo n.

a€pA a randomly sampled from A.

D(m,n) The Delannoy number for the coordinate m and n.

S, The symmetric group on n elements indicating all possible
permutations for a set of size n.

fog Composition of two functions f and g such that f(g(-)).

| b a divides b such that § € Z.
Sequence

|| Length of sequence s.

1 The set of indices for sequence s.

S; The element with index 7 in sequence s for i € I.

s|le Concatenation of elements e to sequence s .

s Substring of sequence s from index m to n.

s" Shorthand for s™n(fs)n,

Predy, (4) The largest preceding index of ¢ in index set I, of sequence s.

Last(s) The last element of sequence s.

Init(s) The subsequence of sequence s excluding Last(s).

LCS(a,b) The |[Longest Common Subsequence| of sequence a and b.

Patch

Ret,_p Function that maps the indices of retained values in file b to
the corresponding indices in a.

Ins, Function that maps the indices of b not in Ret,_;, to the
corresponding new values.

Patch,_,; Patch consting of Ret, ., and Ins, ..

Encryption

AESh,(m) AES-GCM encryption of m with Initialisation Vector IV un-
der the key k.

£ Public-key homomorphic encryption scheme.

Epi,(m;r) The encryption of m under the public key pky of A using
randomness 7.

Dy, (c) Decryption of ¢ under the secret sk of A.

E4(m) Shorthand for E,, (m;r), for message m, randomness r, and
public key pk of A.

D 4(c) Shorthand for Dg,(c), for message m, randomness r, and

EA(ml) %, E(mg)
E’A(ml) X E(mz)

secret key sk, of A.
The homomorphic addition operation.
The homomorphic multiplication operation.

Table 2.1: Introduced notation

XXX

CHAPTER 3. SECURE PATCH COMPOSITION

Chapter 3
Secure Patch Composition

This section discusses possible approaches to the secure composition of patch files.

We introduce the notion of Secure Compose — sCompose — and suggest possible ap-

proaches to the problem. In the[Version Control System| (VCS|) scenario we consider,

patch composition plays an important role. A [VCS allows multiple people to work on
the same piece of software while at the same time keeping the system maintainable.
A repository stores the files of a project. Everyone that has access to the repository
has access to the files that reside within it. We assume that all authors of a project
are allowed to read and write to the remote server and, by extension, are allowed to
process the data contained within the repository.

Commonly, repositories allow for branching and merging these branches in the
version history. Authors can use branches to distinguish between development and
production versions and even allow for granular extensions only concerning a par-
ticular product feature. The complete history of a repository is a tree that consists
of commitments. Commitments combine meta-data such as the author, textual de-

scription of the change, and the date, with the patch description.

oo looet Uo7
(a) (b) (c)

Figure 3.1: Depiction of different scenarios in a[Version Control System| with regards
to branching. (a) shows the start of a branch and the parallel existence of the main
branch and feature branch. (b) depicts the merging of a feature branch with the main
branch. (c) shows the same tree and feature as (b) with a squashed commitment.

XXX1

CHAPTER 3. SECURE PATCH COMPOSITION

The fine-grained branches focussed on features, named feature branches, can be
merged with the main branch. For maintainability and stability, it might be desirable
to squash commitments before performing such a merge operation [} Squash commits
combine multiple commits in one single commit. Combining commitments ensures
that we cannot roll back to a partially working version of a feature. It results in a
tidy version history with working code if we wish to roll back to a certain point.
Figure depicts the different possible trees as a result of merging. We want to
maintain this functionality in a secure repository.

This section discusses multiple approaches to the problem of securely compos-
ing patch files. These approaches are iterative. However, they do not all have the
same Security Model. We first discuss the ideal functionality of our Secure Compose
function. With secure, we mean that the composition function does not leak infor-
mation. We elaborate on the exact functionality and the different Security Models

in the next section.

3.1 Security Setting and Ideal Functionality

All authors have access to the repository and should be able to edit the project at
will. Thus we see that the set of data providers P is equal to the group of receivers,
R. Note that we can perform difference analysis over the cleartext. Since P = R, all
parties can share the same secret key. Thus there is no reason for any of the parties to
perform the difference analysis in ciphertext space. This plaintext difference analysis
allows for the cheapest difference analysis currently available.

We have two participants p, p’ € P, note that p = p’ is possible. Both parties have
access to file f;. On individual basis, p has file f, and p’ has f;. p creates Patchy, _,,
and p’ creates Patchy,_, ;. The goal is for S to determine Patchy, _,;, without learning
the number of operations, the location of operations, or what the content of the lines
is. § stores the result until any r € R requests the output. The ideal functionality
of the Secure Compose function is given in Figure

We use two different sets for S. We have a a single server setting, S = {5} and
a two server setting, S = {Sp, Sp}. In the latter case, we consider the two servers to

be non-colluding. Non-colluding servers are servers that do not communicate other

"https://blog.carbonfive.com/always-squash-and-rebase-your-git-commits/

XxXxil

https://blog.carbonfive.com/always-squash-and-rebase-your-git-commits/

CHAPTER 3. SECURE PATCH COMPOSITION

Functionality Ficompose

Participants: p,p’ € P for the set of
providers P, R C R for the receiver
set R.
Parameters: Composition Function
C:F xF — F, for patch files from
input-space F.
Input:
-p: fp € F?
- p, : fp’ < F?
Output:
- p obtains C(f,, fy) if p € R else L
- p/ obtains C(f,, fy) if p' € R else L
- R obtains C(f,, fy)

Figure 3.2: Ideal Functionality for the Secure Compose function.

than specified in the protocol.

3.2 Single Server

In the single server scenario, we propose two methods to hide information. The first
method hides the content and retains the compose property as described in Section
2.5.3] The second method hides all information but loses the ability to compose
patch files effectively.

3.2.1 Hiding Line Content

The image of a patch file’'s Ins and Ret function reveal the content of the target
file when combined with the origin file. The Ins function even shows the content of
certain lines without the origin file. We first hide these values. Since the composition
of patch files is independent of the content of insertions, we are free to choose
whatever method of hiding the content we want. Since all authors have access to the
project, they can share the same secret key to hide the content of the patch files.

After the difference analysis is complete and we have the sets of values to retain
and insert, we start hiding the content of the insertions.

All authors of the project possess a predetermined key k and Initialisation Vector

Xxxiii

CHAPTER 3. SECURE PATCH COMPOSITION

IV. We use AES, as described earlier, to encrypt the image of the Ins. Besides
the content, ¢, we include the version number, v, and the line number, [, in the
encryption. For every line, the author encrypts the following AESY,,(1|| v || ¢) where
[|]v || ¢ denotes the concatenation of the line number, version, and the content of
the line. The content of the line is the value of the insert function for that line,
¢ = Ins(l). Including the version and the line number means every encrypted line of
a patch file is unique from version to version. The content of a line can either be the
content of an existing line or a new line. The only content in a patch file is the new
line in the Ins function. The other form of content is not part of the patch file but
the origin file. For a line [with operation o and content ¢ in version v the functions

take the following form:
Ins(l) = AESK (1] v || Ins(])) (3.1)

Note that Ret stays the same. Ret stays the same since the origin file is not present
on the server and thus hides the content of the lines associated with Ret from S.

The combination of encrypted and hidden lines means that S cannot learn any-
thing about the content of a patch file. Furthermore, different lines have distinct
encryptions as we include the version number and line number as unique identifier
per line. This particular encryption means that S cannot determine how many lines
are the same in the patch file.

Since the retain function stays the same in this case and the composition of patch
files is independent of the content of Ins, we observe that the composition functions
as provided in Equation and still hold.

3.2.2 Hiding All Content

In the previous approach, we still openly show the line number and the associated
operation. This information can lead an attacker to learn something about the doc-
ument. Instead of encrypting the file line by line, we can also encrypt the whole file.
Doing this prevents an adversary from deriving the location or nature of an operation
while a key holder can construct the original patch file before application. Since the
ordering is no longer relevant, we can encrypt the whole file. Randomly permuting

the order of lines before encryption guarantees lines cannot be associated with their

XXXIV

CHAPTER 3. SECURE PATCH COMPOSITION

original position. In the randomly ordered new file, the lines should contain their
original line number as a prefix. The inclusion of the original line numbers allows
the receiver, R, to construct the original patch file. For patch file Patch,_,;, we now
have AES¥., (v || Patch,_,;). This encryption hides the operations, the associated line
numbers, and the content.

While we hide all content this approach does remove the effective composition
of patch files. We can still compose patch files. However, composition is reduced
to concatenation. For files a,b, and ¢ and the associated patch files Patch,_,; and
Patch,_.. it holds that |Patch, .| = |Patch, ;| + |Patch,_,.|, where Patch, .. is the
composed patch file. Where previously the size of Patch,_,. was no greater than the
size of c.

Besides the loss of effective composition, we also leak the length of the files. We
can solve this problem by introducing padding. Padding files to a fixed size, and
consequently, padding patch files solves the situation where we leak the length of
the files. Limiting this size to a fixed one does lower the flexibility of the application.

We can no longer use files of any length but have a strict upper limit.

3.2.3 Analysis

We propose two different approaches. The first approach upholds the composing
functionality as described in Section [2.5.3] This approach hides the content of a
line by encrypting it, thereby hiding the new content or the retained line number.
However, this comes at the cost of leaking the number, target location, and type of
the operations in the patch file. This information could lead an adversary to deduce
the nature of the document or which author is productive and which one is not.
This means that this function does not simulate Fscompose-

Our second approach does not leak as much information as the function suggested
above. It does not leak the operation location. However, it still leaks the number
of lines in a file. Furthermore, hiding the information comes at the cost of losing
the effective composition we introduced. This is clear as the length of the patch file
composed from the consecutive patch files F' = {Patchy,_,y,,...,Patchy, ,_,; } is
>_pep [Pl This size of the new patch file means it is not an effective composition of
patch files. The only time this composition results in an effective patch file is when

all patches in F' only consists of insertions. All other cases result in a longer patch

XXXV

CHAPTER 3. SECURE PATCH COMPOSITION

n
10 100 1000 10000 100000
3.2.1] 8.8-107°s 0.0008s 0.0082s 0.0814s 0.8133s
3.2.20 2.0-107% 5.0-107% 3.6-107°s 0.0003s 0.0033s

Table 3.1: Timing results in seconds for the single server setting. Note that we time
the composition so we disregard encryption or creation time.

file than the target file itself. Thus this patch file is not effective.

Introducing padding in the last function does solve its leakage problem. We argue
that a padded version of the last function simulates Fscompose- It hides the length
of the files since all files have the same length. Furthermore, it hides the operations
and their location. It does so by encrypting the entire file. This encryption means
that we can no longer associate line numbers with operations or derive what the
operations themselves are. Thus we hide, the length of a file, number of operations,

location of operations, and insertions content.

Timing
We test the timing in a real-world scenario. We compose two files multiple times
and report the result. We only time the time it takes for two patch files to compose.
We do not consider any encryption or creating of patch files in the timing. Table
gives the time for different number of compositions. The patch files consist of 30
lines of which 17 are retentions and 13 are new insertions. The insertions are lines
of 100 elements. A padded file is twice the size of a normal file. The test machine is
equipped with a AMD EPYC 7V12 CPU and 28GB of RAM.

We see that the quickest composition is that of concatenating files. This makes
sense as this is the simplest operation. The effective composition method scales

linearly with the number of compositions we perform.

3.3 Non-Colluding Two-Servers

This section suggests an approach that allows for the effective composition of patch
files and hides the location of operations. We extend this idea using a fixed file size
to hide the number of operations partially. The proposed protocols operate under

the non-colluding server assumption and use two of these servers.

XXXVI

CHAPTER 3. SECURE PATCH COMPOSITION

3.3.1 Hiding Line Numbers

Hiding the line numbers is the first step in hiding the content of a patch file.
For Patch,,, = (Retyp, Ins,p), we have Dom(Ret,), Dom(Ins,;), and
Im(Ret,) that contain line numbers. These line numbers are subsets of two dif-
ferent index sets. The relation between the domain and image of the functions and
the index sets is Dom(Ret, ;) U Dom(Ins,_;) = I, and Im(Ret, ;) C I,. The goal
is to hide these line numbers from &. Note that besides hiding the line numbers we
also hide the content of an insertion using encryption. Encrypting the content of an
insertion is the same procedure as we proposed in the first approach of Section [3.2.1]
This means that the output of Ins function is encrypted under shared key, k, and
Initialisation Vector, IV.

We hide the line numbers by randomly permuting the respective domains and
image. For Patch,_,;, we randomly select two permutations m, €r S and o, €r
S)q- 6, is the set of all possible permutations on a set of size n. We use the former
permutation, m,: I, — I, to permute the domain of both functions. We use the
latter permutations, o,: I, — I, to permute the image of Ret, ..

We use the permutation and the original patch description to create a new patch
description that does not reveal the target and origin location of lines. We refer to
these new functions as the permuted patch description. We note the functions of the
permuted patch description by Ret 5" and Ins)’,,. Previously, to obtain the value
of line [, € I, we would get the correct result by evaluating either function with
as input. If [, € Dom(Ret, ;) it is a retention. Conversely, if [, € Dom(Ins,_) it is
an insertion. For the permuted functions the input new input, /;°, is the permuted
line number. This hides the actual location of the new operation. The input for the
permuted functions is [;* = ().

In the case of Ret;"7" we do not only permute the input, we also permute the
output. Without permuting the image of Ret we would reveal the lines we retain
from the previous file. Instead of returning the normal value we would get from
Ret, .,(ly) we now set the result to o,(Ret, (lp)). Combining all the permutations

results in the following descriptions:

XXX Vil

CHAPTER 3. SECURE PATCH COMPOSITION

Ret?"}" = 0,0 Ret,_, 0, ! (3.2)
Inst’., = AES;” olns, o, . (3.3)

Here 1 denotes the inverse of m,. Applying the inverse operation of o, to
Ret?"* results in the actual line number [, € I, that we preserve. We prove correct-
ness of the new functions with permuted output and input. For ¢ € Dom(Ret,)

we have:

o~ (Retz"y (m(i)) = 07 (0 0 Retayp o ') (m(i))) (3.4)
= (Retqyy o m 1) (7(3)) (3.5)
= Retq (1) (3.6)

For j € Dom(Ins,_,;) we have:

Insy,,(7(j)) = (AES}Y olns, .y 0 7 ')(m(j))) (3.7)
= AESLY oIns,_s(5) (3.8)

The permuted patch file consists of four elements. Namely, the two new functions

— Ret™% and Ins"’,, — and the respective permutations — 7, o,. Patch’®%* =

a—b a—b a—b
Tb,0a b -1 ;
(Ret)”, Ins’,, ., m, 0, ") describes the permuted patch.

Example: Creating a Secure Patch File
Suppose Alice has generated the patch file Patch,_,; for files a and b. Where |a| = 5

and |b| = 7. The changes from file a to b are the insertion of two new line on line

1 and 2. This result in the following Ins,_,, and Ret, ,;, functions,

Rety (i) =i — 2 if i € {3,...,7}
Ins, (i) =b; if i € {1,2}

Alice generates the following two permutation:
1 2 3 45 67 1 2 3 4 5
Ty = Oq —
24516 73 2 315 4

XXXVIil

CHAPTER 3. SECURE PATCH COMPOSITION

She applies 7, to both functions. This results in hiding the target location of the
newly inserted value or the retained value. Additionally, she applies o, to the
Image of Ret, ., to hide the location of the origin of the retained line. This result

in the following functions:

Ret75 (my(i)) = 04 (i — 2) ifie{3,...,7}
Insi’,, (m(1)) = b; if i € {1,2}

To push a permuted patch file to the remote location, S, we split the patch in the

descriptions (Ret’ 5", Ins’®

oo) and the permutations (m,, 0,). We send the permuted

patch description to Sp and the permutations to Sp. Since the entities in S do not
collude we observe that Sp cannot satisfy the operation in Formulas and [3.7
Thus, Sp cannot derive the actual values of either of the original functions Ret,_,; or
Ins,_p. Sp has no information on the descriptions at all. Consequently, this server
cannot derive the original functions either.

The functions still reveal the number of each operation we perform and the size
of the files. The size of both functions — |Ret}"7°|, |Ins.",,| — reveal the number of

entries per operation. Furthermore, the size of the permutations reveal the size of

the target file, b, and the origin file, a — |o,|, |m|.

3.3.2 Hiding File Size

To prevent disclosing the length of the origin and target file, we use a fixed file size.
A fixed file size means that the length of the permutations and the functions do
not reveal information about the length of either file other than that it is smaller or
equal to the maximum size. Furthermore, this form of padding hides the number of
insertions. We use padding to create an equal file size. The padding means we fill
the Ins and Ret functions with entries till they both reach their maximum size. The
size of both functions should be equal to prevent revealing information about the
nature of the file. We note a padded patch file using Pad(Patch, ;). This means we
pad both functions, given by Pad(Ret;"%") and Pad(Ins]".,
|Pad(Ret %) = |Pad(Ins"

a—b a—b

), where we ensure that
)|. For Ret we pad by inserting values in the origin
file and carrying these to the target file. For Ins we pad by adding new values on
unused indices. For ease of use, we assume we build the padding after the actual

content.

XXXIX

CHAPTER 3. SECURE PATCH COMPOSITION

The desired length of actual content in a file dictates the length of a padded file.
We say that the maximum number of lines in an unpadded file is n. Consequently,
we note that |Retq,_| + [Insq—s| < n, since the patch file describes the target file.
To hide the number of operations we pad both the functions to the size n this means
the number of lines in a padded file is 2-n and |Pad(Ret]"}")| = |Pad(Ins’"

a—b a—>b)| =n.
This ensures that we do not reveal anything about the nature of the document by

indicating which operation the patch leans to.

Example: Padding a Secure Patch File
Alices has files a and b where |a| = 2 and |b| = 3. The length of padded files is 6.

Note that |b| is the maximum size content can have. File b adds one line to the

two existing lines of a. This results in Patch, ,, = (Ret, .y, Ins,_,) where

1 ifrx=1
Ret,_p(x) = 3.9
) { 2 ifo=3 39
Ins,sp(x) =1 ifx=2 (3.10)

Alice pads these functions. Since the padded file size is 6 we have |Pad(Ret ;)| =
|Pad(Ins,)| = 3. Alices needs one extra dummy line in file a and two newly
inserted lines to pad the functions. Thus we have the following one extra line in

file a that contains no useful information, this is an empty line.

1 ifz=1
Pad(Ret,—p)(z) =< 2 ifa =3 (3.11)
3 ifxr=4

Note that we use a line number for the input that is not yet part of any of the

functions. Anagously, we insert empty lines in the remaining spots of Ins;

Pad(Ins,) (z) = { ; iiz :5 5 (3.12)

The new padded functions works the same as normal functions would. However,
there is now data that does not contain information for the end-user. R can filter

this data after receiving the result.

pdl

CHAPTER 3. SECURE PATCH COMPOSITION

PatChfi_”rt Patchfo_m.
Sp Ty -]ft -]ft Tf; -]fi — ‘[fi
Uﬁliffi—)ffi 0';012[]00—>If0
TferOf; Tfi:0 fo
S Retfi;ft Retfoﬁfi
D Insﬂ’ft I Tfs
fi—fi NSy,

Figure 3.3: Information of two consecutive patch files held by S = {Sp, Sp}.

3.3.3 Composition

We now consider the composition of two consecutive permuted patch files. Recall we
have two providers p,p’ € P with shared file f;. p has f, and creates Patch;r:i}i“ =

(Rety"y, Insyt,,, 7y, 07"), p sends the description (Ret}r:i;’zo, I ”3;5_”[1) to Sp and

a—b a—b’
the permutations (7, os,) to Sp. Analgolously, p’ has f;, creates Patch;fi;;f =
(Reti>5, Insyb,,, T, 0171_1) and sends the description (Ret;if’;’j{i, Ins}rif;ft) to Sp and

permutations (y,, oy,) to Sp. Figure shows the information held by each server.

To compose two patch files we need to relate Im(Rets, s) to Dom(Rety)
and Dom(Insy,). These values are part of the target file f;. In the previous
sections we permute the inputs and the output of the Ret and Ins functions that
contain line numbers. In this section we create a new permutation that allows Sp to
link the two patch files without revealing the location of the operation.

Sp creates this new permutation by composing two permutations. Referring to
Figure [3.3] we see that two permutations have the same domain. These two permu-
tations are aJIil and 7y,. Using these two permutations we can link Rety,_,y, to the
functions of Patchy, ;. We do this by creating the new permutation a = 7y, o 0;1_1.
Recall that 7y, €r Gy and oy, €g Sy, thus the composition of these two permuta-
tions is also a random permutation in Gy,

Sp can use the new permutation « to create the composition as described in
Equations [2.6] and [2.7 We proof correctness Sp can use « to link the functions.
Figure [3.4) shows the composition.

xli

CHAPTER 3. SECURE PATCH COMPOSITION

Patchfo_,ft

gy - Ift —]ft

S
P 0';01 : Ifo — ’[fo
Rerp T — Reli2f oo Rety
Sb Insg™ . _ [nsg;fi oq o Ret;f;’j{i
nsfo%ft - [nS Tt
fi—=fe

Figure 3.4: Patchy, ., based on Patchy, _,;, and Patchy,_, as composed by S.

Retle%e = Ret?"7" o awo Rety 7" (3.13)
= Ret!*5* oa o (0,0 Rety .o, ") (3.14)
= Ret]"5 omyo0, ' ooy0 Rety .o, ") (3.15)
= (0,0 Ret, spom,) om0 Rety . om,) (3.16)
= 0,0 (Retqy 0 Rety_,.) om, ! (3.17)
= 0,0 Rety.om, ! (3.18)

We see that by inserting o between the two Ret functions we obtain the composed
Ret function. To achieve this we use Equation [3.2] Both in substituting the Ret
functions and observing that we arrive at the correct value. Furthermore, we use
Equation [2.6|to determine that we actually create the composition of the underlying
Ret functions.

In the same fashion we can determine the insertions from the Patch,_,; are still
present in Patch,_... Recall that a composed Ins function consists of two parts.
Equation shows the two parts. We prove the correctness of the first case. The
second case directly translates to a permuted setting. We will show that the first

line also correctly forms with the use of a. Since we only discuss the first line of the

Tc

composed Ins we use 'Ins™,

2.7 The retained insert is:

to indicate we refer only to the first line of Equation

xlii

CHAPTER 3. SECURE PATCH COMPOSITION

'nsT, = Ins,, o« o Ret;" (3.19)
= Ins’,, oao (o0 Retp.om, ') (3.20)
= Ins,, o(mo0;,) oo, 0 Rety ,.om, " (3.21)
= (AES;}” oIns, sy om,) om0 Rety oo, (3.22)
= AES;}Y o(Ins, 0 Rety) o, * (3.23)
= AES;}Y o(*Insg_y.) 0w, (3.24)

We see that the final line is part of a permuted Ins function as given in Equation

Te

5, function. We see

ﬂ. The other part of the equation is the already existing Ins
that the whole function has the form we give in Equation [3.3]in the following:

- AESéV ol'Ins, ,.om, *
Insye,, = v - (3.25)
AES," oInsy,.om,
This results in the new Insjc, . as;
Insl®,, oao Ret, "
Insle,, = { , ij e (3.26)
NSy_se

Beside the newly created description, Sp needs to store the correct permutations.
As we can observe from the new Ret function we require o, as our origin permutation.
Furthermore, since we are still working on ¢ we require 7, for the target permutation.
Figure [3.4) provides an overview of the composed patch files stored on Sp and Se.

Combining all the information results in the Secure Compose function. Figure

3.5 gives the protocol to perform the function.

3.3.4 Analysis

We propose a new way of formatting a patch file. We do this by randomly creat-
ing two permutations that work on the index sets of the origin and the target file
(I, I)). We store the permuted description separately from the permutations them-
selves. Since the servers in S are non-colluding, this means the server that holds

the permuted patch description, Sp, does not learn the permutation. Conversely,

xliii

CHAPTER 3. SECURE PATCH COMPOSITION

Sp Sb
Th:0a __ —1 Tb;0a __ Ty Tbh,0a
Patch"" = (aal,wb) Patch’"}" = (Ins,",,, Ret’"5")
Tc,0b __ — T, 0 e Tc,0b
Patch;”" = (0, ", m¢) Patch, %" = (Ins;°, ., Ret;<7")
_ —1

~

Ret™ % = Ret"™ %" o ov o Ret; %

a—c a—b b—c
) Tc,0h
Ingme — Ins,’,, oao Ret,],
a—cC [nsﬂc
b—c
Te,0a -1 Te,0a g Te,0,
Patch?*%* = (o, %,) Patchl<’* = (InsZe,,, RetT’*)

Figure 3.5: Depiction of the Secure Composition Protocol.

the server that stores the permutations, Sp, does not learn the permutated descrip-
tion. Since neither server has access to both the pieces of information, neither of the
servers can infer the original patch file.

While § cannot determine the target or origin line number of an operation, it can
deduce the size of both files. Additionally, it can determine how many retentions and
insertions a patch file describes. These values derive from the size of the permutations
and the size of the descriptions, respectively. To hide this, we introduce a form of
padding. The padding makes all files have the same size.

Furthermore, since we set the number of retentions and insertions to a fixed
number, we hide the number of operations and the file size. The specified number
of operation causes a padded file to be twice the size of the content. These files are
less flexible as we can no longer grow files to any desired length and need to work in
the set bounds or reveal we need more space by once increasing the size of the files.

If the servers in S do collude, they can learn the original lines in the patch file.
Learning the original line numbers means that the Ret and Ins functions no longer
hide the origin and target line numbers. Im(/ns) is still encrypted. This situation
is the same situation we describe in Section [3.2.1| with one distinction, the patch file
is still padded. Since a padded patch file contains fake operations, we do not know
which operations are real and fake. However, we are certain that the line numbers
contained in a function are part of that function. Thus if the entities in S collude,
they learn the actual line numbers. The patch still hides other information. The
length of files, number of operations, and content are still hidden. The former two

remain hidden due to the padding, the latter hold under the encryption we use on

xliv

CHAPTER 3. SECURE PATCH COMPOSITION

@ Actual Insert

@® Actual Retain

Th,Oa Tc,0b 3
Ret >, Ret, . Padding Value
Th e
Insa—)b Insb—)c

Figure 3.6: Visualisation of composition of two padded permuted patch files
— Pad(Patch}""), Pad(Patch;<%"). It is the case that |Ret,,| > |Rety.| for

a—b
|Pad(Ret;"5)| = |[Pad(Ins’",,)| = |Pad(Ins;e,)| = |Pad(Ret,*°")| = 5. We see that

a—b a—b
since the inequality holds the composed Ret function shrinks, while the composed

Ins function grows by the same amount.

the insertion content.

Composing permuted patch files is possible. Sp creates a new permutation and
sends this permutation to Sp. This new permutation is o = 7y, oaJTil. Sy, is a group
under composition of permutations. Since 7y, 0, € &)y, we have a € &jy,).

Analogously to composing permuted patch files, we can also compose padded
permuted patch files. However, in composing two padded patch files, we may reveal
information. The information revealed is inherent to the nature of the composition
of patches as described in Equations and Figure [3.6] visualises the problem
we run into in the situation where the second patch file has fewer actual retain

operations than the first patch file. In this case, we cannot obtain enough padded

xlv

CHAPTER 3. SECURE PATCH COMPOSITION

n

10 100 1000 10000 100000
3.3.1 0.0002s 0.0014s 0.0140s 0.1400s 1.4001s
3.3.2 0.0002s 0.0020s 0.0198s 0.1985s 1.9800s

Table 3.2: Timing results in seconds for the non-colluding two-server setting. Note
that we time the composition so we disregard encryption time.

retained lines. This means Ins grows by |Ret 5| — | Rety_..| and Ret shrinks by the

a—b |

same amount. Thus we do not simulate Fscompose entirely.

Timing
We test the timing in a real-world scenario. We simulate the two different servers
by separating objects on the same machine. Only limiting the separation to objects
means that the communication time is lower than we would expect in actuality. We
compose two files multiple times and report the result. We only time the time it takes
for two patch files to compose. We do not consider any encryption or creating of patch
files in the timing. Table|3.2| gives the time for different number of compositions. The
patch files consist of 30 lines of which 17 are retentions and 13 are new insertions.
The insertions are lines of 100 elements. A padded file is twice the size of a normal
file. The test machine is equipped with a AMD EPYC 7V12 CPU and 28GB of
RAM.

Once again the time scales with the number of operations. Furthermore, we
observe that the padded composition takes about twice as long as the unpadded
variant. This timing difference is logical since the padded version is twice as long as

the normal version. Thus the composition has twice as many lines to compose.

3.4 Conclusion

We propose multiple approaches to perform Secure Patch Composition — each with
its limitations and capabilities. If the only goal is to hide the content of the lines,
we can use a symmetric-key encryption scheme to hide said content. While this
is effective at suppressing the content, it still leaves meta-data in the open. This
data includes the type of operation for a given line in the target file, the number of

retentions and insertion, and the length of the files concerned.

xlvi

CHAPTER 3. SECURE PATCH COMPOSITION

To hide the meta-data, we propose a naive approach that hides everything in a
patch file. In doing so, we lose the capability to compose an effective patch file in
any non-trivial case. To circumvent this, we introduce a new way of storing a patch
file that consists of a permuted patch description stored on Sp and the associated
permutations on Sp. This allows for the composition of effective patches.

We hide the number of operations by setting an overall size limit on the files.
This file limit is twice the length of the number of retentions and insertions, where
the number for both operations is equal. This number is also the maximum size of
any content. All files have the same length. Thus we create effective patch files since
all our patch files are, by definition, no longer than the target file. However, the size
of the actual content is at most half of the patch file. A more extended file than the
content means, with regards to the content, that we cannot create an effective patch
file. This latter observation is the case for any system using a fixed file size with a
content size that can be less than the size of the file.

In padding the files, we also hide the number of operations. We can no longer
determine how many insertions or retentions are part of a patch file. However, in
composing two patch files, we learn something about the number of retentions from
one patch to another. We learn how many fewer retentions there are in the second
patch file. We still do not learn anything about the insertions other than that we
need the insertions to fill the set file size. Figure [3.6| shows this phenomenon.

We summarise all proposed functions in Table [3.3] We note that the approaches

in Sections [3.2.1] and [3.3.1] are unpadded and that the approaches in Sections [3.2.2
and are padded.

xlvii

CHAPTER 3. SECURE PATCH COMPOSITION

Sec. Simulates Fscompose Effective Trust Assumption Communication
Compose Complexity
Single Server
3.2.1 Leaks Meta-Data Yes Honest-but-Curious 0 rounds
3.2.2| Yes No Honest-but-Curious 0 rounds
Non-Colluding Two-Servers

3.3.1] Leaks Number of Yes Honest-but-Curious, 1 round
Lines and Operations Non-Colluding

3.3.2| Leaks Number of Re- Yes Honest-but-Curious, 1 round
tentions Non-Colluding

Table 3.3: Summary of sCompose functions and their properties. We show the pro-

tocols suggested in Sections and [3.3]

xlviii

CHAPTER 4. PRIVATELY ALIGNING SEQUENCES

Chapter 4
Privately Aligning Sequences

In both diff and diff3 we require alignment of sequences. Autexier achieves the

alignment of two sequences using the [Longest Common Subsequence| (LCS)) [Aut15].

We can use these functions to strengthen a secure repository further. Additionally,
we can also use them as a basis for a merge algorithm that can securely merge data
from different sources. Securely merging could be relevant to data aggregation in
secure settings.

This chapter investigates how we can solve the [LCS| problem in our security
setting. Our security setting, in this case, requires the server executing the function,
S, to receive two inputs and produce the while itself not learning anything
about the LCS. We call the procedure Secure [LCS| also noted as sLCs. This chapter
describes the ideal functionality, security setting and suggests two approaches. The
first is an interactive protocol. The second is an adaptation of this protocol.

We first discuss the security setting and the ideal functionality. We discuss the
applicability of the state-of-the-art to our scenario. We then present and analyse our

approaches.

4.1 Security Setting and Ideal Functionality

In this scenario, we operate under a more general assumption. In this setting, we
say that the set of receivers of the output, R, and the set of data providers, P, can
share elements but are not necessarily equal. The more general assumption is vital
for more fine-grained repository structures, such as sub-modules, and for merging

data for a specific target that owns the data but is not the processor.

xlix

CHAPTER 4. PRIVATELY ALIGNING SEQUENCES

Functionality F; cs

Participants: p,p’ € P for the set of
providers P, R C R for the receiver
set R.
Parameters: Function, LCS(+, -) for
files from F.
Input:
-p: fp € F?
- pl : fp/ S IF?
Output:
- p obtains LCS(f,, fyy) if p € R else L
- p/ obtains LCS(f,, fy) if p’ € R else L
- R obtains LCS(f,, f7)

Figure 4.1: Ideal Functionality for the Secure Longest Common Subsequence func-
tion.

With this function we wish to determine the [LCS|in such a way that we can use
it to perform sDiff and sDiff3. These two functions are the topic of the next chapter.
To perform the sLCS means that a third party, S, can determine the [LCS| without
learning about the underlying data.

We have two participants p, p’ € P, where p = p/ is possible. However, in the case
of p = p/, it would be more effective for the participant to perform their function
locally on the plaintext files. We consider a single server scenario, so S = {S}, and
the receivers own a shared public-secret key pair. We give the ideal functionality for
the Secure [LCS| noted as Fycs, in Figure [4.1]

4.2 Secure LCS Calculation

Franklin et al. propose a method to privately determine the m [FGMO09|. This
method determines the length of the and provides backtracking methods to
derive an encrypted embedding of or the whole This private approach serves
as a basis for our secure approach. Note that in a private setting, two parties jointly
compute the [LCY| between their inputs. In our setting of Secure [LCS| we let a third
party determine the while not learning it.

Franklin et al. base themselves on Masek and Patterson [MP80] who propose a

method to determine the [LCS| based on a technique presented by Arlazarov, Dinic,

1

CHAPTER 4. PRIVATELY ALIGNING SEQUENCES

Kronod, and Faradzev [ADKET70]. This approach is commonly referred to as the
"Four Russian" technique after the nationality and workplaces — Moscow at the
time — of the four authors. The four Russians method can speed up algorithms that
involve binary matrices.

We note that in the case of files, this approach will not pose any real-world
benefits. It assumes a fixed alphabet size. This limitation is feasible in the case we
are comparing words or sentences. The alphabet could be the Latin alphabet and
some punctuation and whitespaces. However, we work with files. The elements are
lines. Lines are a sequence in itself with characters from the alphabet >. We cannot
precompute all possible blocks since there are infinite possibilities.

Since we cannot precompute blocks, we approach the Secure problem by
securely constructing the matrix as per the dynamic programming approach. To
enable this, we use 0 as a special symbol to indicate an empty sequence. The empty
symbol helps us in later stages to determine the actual [LCS| while hiding the length
and embedding of the from S.

4.3 Sequence Encryption

For a sequence s, with indices in I, and public-key pkxr of the receiver we define the
encryption of s under pkr as Ex(s) where the encryption is given as Fgr(s) =
(Er(si))icr- The index set of the encrypted sequence is the same as the initial
sequence. Since we encrypt a sequence element wise we retain the ability to note
substrings for s. They are directly analogous. Thus the encrypted version of the
substring s* for i € I, is Fr(s'). Encrypting a sequence in this way does leak its
length. The participants p,p’ € P use this form of encryption to hide the inputs

from S.

4.4 Interactive Protocol

This section expands on an interactive protocol between & and R. It shows how
p, P’ € P share their files, f,, f,» respectively, with S and how S and R determine the
[LCS] With slight adjustments, S can perform the protocol by itself. However, this

requires post-processing after decryption or in-place homomorphic multiplication.

li

CHAPTER 4. PRIVATELY ALIGNING SEQUENCES

We discuss these adjustments in later sections.

4.4.1 Interactive Equality

Equality over encrypted elements is not as straightforward as its plaintext coun-
terpart. For our interactive approach, we use an interactive protocol suggested by
Nateghizad et al. [NVEL18|. The authors use two cryptosystems in their equality
protocol. These are Paillier [Pai99] and DGK [DGKOT7|. The latter finds its merit
for this application in its efficient zero-check and small message space, enabling low

communication cost.

Paillier. Paillier Encryption has a message space of Z, where n is the product
of two large prime numbers p and ¢ for which p # ¢. The Paillier scheme is a
partially homomorphic scheme that supports homomorphic addition. The encryption
using Paillier is Epg, (m;7) = g™ - r™ mod n?. Recall that Exz(m) is a short-hand
By
is (g,n) and the private key is (p,¢). In line with [NVELI1S]| [-] indicates a Paillier

i (M;7). In the encryption g is a generator of Z! and r €x Z;. The public-key

encrypted message.

DGK. In DGK, for a DGK security parameter ¢, we generate keys by first choosing
two different ¢-bit prime numbers. We denote these prime numbers as v, and v,.
Using these values we determine two prime numbers p and ¢ such that v, | p and
vy | ¢ and n = p - q. We choose u to be the smallest possible prime number greater
than /42, where ¢ is the input length. Choose a random integer, r, that is moderately
bigger than 2 - ¢, 2.5 - t is sufficient. Finally, we have two values g and h where the
multiplicative order for g is u - v, - v, and for h is v, - v,. The public-secret keypair
now is pk = (n, g, h,u) and sk = (p, ¢, vp, v,). In line with [NVELIS§]| [-] indicates a
DGK encrypted message.

EQT-1

This protocol is a two-party protocol that returns a Paillier encrypted bit indicating
the equality of two elements. It determines this by either computing the Hamming
Distance or performing a secure comparison based on the work by Damgrad et

al. [DGKO7|. The method requires two different approaches because only using one

lii

CHAPTER 4. PRIVATELY ALIGNING SEQUENCES

would reveal the result to the second party. To prevent this, the first party tosses a
coin to decide between the Hamming Distance and the Comparison approach. We

sketch EQT-1 in Protocol [I} ¢ denotes the length of the input in bits.

Protocol 1 EQT-1

Require: Two input values a and b.

Ensure: The Paillier encrypted bit representation under the key of the second party.
1: A generates random value r, determines [z] <— [a — b+ r] and sends [z] to B.
2: B decrypts [z] and encrypts the first ¢ bits using DGK to obtain [z;] for 0 <

1 < L.
3: A determines [r; & x;] for every bit. > In this case @& denotes the bit xor.
4: A determines 04 € {0,1}.
5: if 64 = 0 then
6: Determine the Hamming Distance between r and z. This results in a single

element. Additionally, generate a list of £ — 1 non-zero random elements smaller
than /.

7. else if 94 = 1 then

8: Use the DGK Comparison approach on r and x. This results in a list of ¢

encrypted elements.

9: end if > Both approaches work since if a = b, x = 7.
10: A randomly permutes the order of the encrypted elements and send this to B.
11: B decrypts and sets g = 1 if at least one of the bits is 0, else g = 0. B sends

[(5 B] to A.
12: A determines [J]. If 64 =0, [J] = [dp]. If 4 =1, [9] = [1] - [65] "

We can replace the Paillier Cryptosystem with any that supports homomorphic
addition. Furthermore, the same holds for the DGK. However, values encrypted
using DGK do not interact with any part outside of the confines of the EQT-1
protocol. The Paillier encrypted values do as these are the input and output of the
protocol. Suppose we wish to use the algorithm’s result in any other system we only

need to change the Paillier system.

4.4.2 Protocol

Using EQT-1, we construct an interactive protocol between & and R that securely
determines the LCS. To this extent, we use a different encryption scheme in the
EQT-1 Protocol. Instead of Paillier, we use the Fully Homomorphic Encryption
Scheme proposed by Cheon, Han, and Kim [CHK20]. Note that this scheme could

be any scheme that supports homomorphic operations that are useful in the further

liii

CHAPTER 4. PRIVATELY ALIGNING SEQUENCES

application of the [LCS It is application dependent whether these operations are
limited to homomorphic addition or require homomorphic multiplication as well.
Since the result of the LCS will possibly be used in a later stage for diff and diff3

we choose a scheme that allows for both operations.

CHK Cheon, Han, and Kim built on the bootstrapping technique proposed by
Nuida and Kurosawa [NK15|. They apply their new bootstrapping technique to the
CLT homomorphic encryption scheme [CLT14]. The message space is Z, for prime p
the definition of the cryptosystem include the homomorphic Addition, Convert, and
Multiplication function. We note encryption under this scheme as ().

We now have a scheme that supports homomorphic multiplication (®) and ho-
momorphic addition (@). Protocol [2| gives the scheme we propose. This procedure
does not leak the length of the [LCS| As in every operation for every possible [LCS|
we determine the new [LCS|

Protocol 2 Two-Party sLCS

Require: p,p’ € P provide files f with index set I,, and f’ with index set I,
respectively.
Ensure: R learn the [Longest Common Subsequence]
1. p determines (f)r, p’ determines (f’)r. They send (f)r and (f')r to S.
2: S initialises matrix M of size |I,| + 1 x |Iy| + 1 with all values as {[0]z }.

3: fOPiEIde Dlp:{177|f|}
4: forjefp/ do D-[p’:{]-w"a|f/|}
5: S performs the EQT-1 protocol with R for the i** element of f and the

7 element of f’ such that ¢ < EQT-1(f;, f}).

6: S determines the next element in the by ¢+ fi ® V.
7 S determines TL = {m/||c|m & M;_1 -1}

8: S determines 7' = {[0]g | m € M;_; ;}

9: S determines L = {[0]g | m € M, ;_1}.

10: M;; =TLUTUL

11: end for

12: end for

4.5 Non-Interactive Protocol

In the previous section, we sketch a protocol where S and R work together to obtain

the This section depicts two protocols that allow S to do this themselves.

liv

CHAPTER 4. PRIVATELY ALIGNING SEQUENCES

4.5.1 Non-Interactive Equality

Equality testing of encrypted elements is a problem that knows many approaches.
There exist multi-party protocols that let no party learn any of the values compared,
nor the result [NVELIS, [SK16|, we use such a method in the interactive variant.
Furthermore, public-key encryption schemes exist that allow for equality testing for
an entity with a trapdoor function |[LLST20, ZCL™19]. These schemes are called
[Public Key Encryption with Equality Test| (PKEET). Contrary to its interactive
counterparts, PKEET] schemes let one party perform the equality test.

In our scenario, we wish that an external party, S, can determine the equality of
two elements independently without learning the outcome or the input of the test.

If they did learn something about the inputs or the output, it would enable them

to learn something about the [Longest Common Subsequence]

Since S cannot learn anything, [PKEET] schemes are not helpful as they reveal
the outcome of the equality test. Furthermore, we want S to perform the function;
thus, an interactive protocol can only take place between members of S.

We also look at a different solution. This solution requires post-processing to
obtain the final result but does not require communication or a trapdoor function.

We cite the following theorem:

Theorem 4.5.1 (Fermat’s Little Theorem [Lis05]). If p is a prime number and a is

any number not divisible by p, then a?~* =1 mod p.

This theorem allows us to create an equality test. For any two number in a,b €
Zy,a # b for prime p we have (a — b)P~t = 1. While, if a = b we have (a —b)P~! = 0.
We can even extend this beyond the necessity where p is a prime. Fermat’s
Little Theorem is a particular case of the Euler’s Totient function [Kal05|. For a

given integer n, the Totient function determines the number of co-primes with n

smaller than n. We say two numbers are coprime if the |Greatest Common Divisor]|

(GCD)) of the two numbers is 1. GCD(a, b) notes the for the numbers a and b.

Definition 4.5.1 (Euler’s Totient Function [Kal05]). ¢(n) gives the order of the
multiplicative group Z,. If n is prime ¢(n) =n —1. If n = Hlepfi, where d > 2,
P1,---,pq are distinct primes, and k; > 1, the totient function is given as:
d
¢(n) = [[o) (4.1)

i=1

lv

CHAPTER 4. PRIVATELY ALIGNING SEQUENCES

The Totient function gives the order of a group. In a group, raising an element
to the power of the group’s order results in one. Here it is clear that Fermat’s Little
Theorem is a special case of the Totient function since for all n € Z; we have
GCD(n,p) = 1, for prime p. Thus ¢(p) = p — 1 for prime p.

Instead of ¢(n) we could use A(n). The latter is defined to give the smallest
number such that 2™ =1 mod n.

The more general case of Fermat’s Little Theorem is helpful in cases where the
message space is not of prime order. This property means we can still use schemes

such as Paillier.

4.5.2 Protocol

We sketch two non-interactive protocols. Both protocols share that we only adept
line 5 through 9 with regards to Protocol

In Place

Using Fermat’s Little Theorem and the Fully Homomorphic Encryption sheme de-
scribed in the previous section we determine the equality of two element locally by

S. We achieve this by the following formula:

p—1

@)(Er(m) © Er(m')) (4.2)

Where the encryption operation denotes the scheme proposed in [CHK20], ®" "
are p — 1 homomorphic multiplications, and & is the homomorphic substraction
operation. Note that this operation is expensive as we perform p — 1 homomorphic

multiplications. Protocol [3| reflects the use of this approach.

Post Processing

This protocol eliminates the need for in-place multiplication to achieve an equality
result. Eliminating the in-place multiplications comes at the cost of revealing the
content of one of the file to R. This approach could be useful when p € PNR.

We eliminate the need to perform the multiplication in place by making use of
a post-processing step. We determine Er(m) © Ex(m’) and store this along side

the element m. Once R decrypts the [LCS| they can disregard all values for which

Ivi

CHAPTER 4. PRIVATELY ALIGNING SEQUENCES

Protocol 3 In-place Non-Interactive sLCS

Require: p,p’ € P provide files f with index set I,, and f’ with index set I,
respectively.
Ensure: R learns the [Longest Common Subsequence]
1: p determines (f)%, p’ determines (f’)r. They send (f)z and (f')r to S.
2: S initialises matrix M of size |I,| + 1 x |Iy| + 1 with all values as {[0]z}.
3: fori € I, do > 1, ={1,...,|f|}
4 for j € I, do > Ly ={1,....|f|}
5 S determines J < (f; — f)=-
6: S determines the next element in the c— fio ().
7 S determines TL = {m||c|m € M;_1 1}
8
9

S determines T' = {[0]g | m € M;_;}
: S determines L = {[0]g | m € M, ;_1}.
10: M,; =TLUTUL

11: end for
12: end for

Dr(Er(m) e Ex(m’)) # 0. Since we no longer require multiplications we can even
use any scheme that support homomorphic subtraction, such as Paillier. We depict

the protocol, using Paillier, in Protocol [4

Protocol 4 Post Processing Non-Interactive sLCS

Require: p,p’ € P provide files f with index set I,, and f’ with index set I,
respectively.
Ensure: R learns the [Longest Common Subsequence]
1. p determines [f]g, p’ determines [f']z. They send [f]r and [f']z to S.
2: § initialises matrix M of size |I,| + 1 x |Iy| + 1 with all values as {([0]z, [0]r)}-

3: fori e I, do > 1, ={1,...,|f|}
4: for j € I, do > Ly ={1,...,|f|}
5: S determines ¥ < [f; — fj]=.

6: S determines T'L = {(m,?) | m € M;_1;_1}

7 S determines 7' = {([0]x, [O]r) | m € M;_1;}

8: S determines L = {([0]g, [0]r) | m € M, ,;_1}.

9: M,; =TLUTUL

10: end for
11: end for

We can obtain the binary result of the subtraction in both cases. For the scheme
proposed in [CHK20|], we note that the message space is Z, for a prime p. Thus,
we can use Fermat’s Little Theorem to obtain 1 in all cases that are not 0. The

Paillier cryptosystem has the message space Z, where n = p - ¢ for two large prime

lvii

CHAPTER 4. PRIVATELY ALIGNING SEQUENCES

p and ¢. Since the post processing happens at R, the owner of the private key of the
encryption scheme, we can use ¢(n) without the risk of the cryptosytem losing its
effectiveness. We can determine ¢(n) = ¢(p) - ¢(q¢) = (p — 1) - (¢ — 1). Once again,

we can now verify that all values besides 0 equal to 1.

4.6 Analysis

The methods proposed above are both build on the dynammic programming ap-
proach to the |Longest Common Subsequence| (LCS)) problem.

The procedures suggested above maintain every possible path. Tracking all pos-
sible paths ensures we do not leak any information as to which path we are choosing.
From the procedure we observe that we have three possible path per operation. These
are, in accordance with the steps on lines 6 through 8 of Protocol 2} (a) Diagonal
Step - M;_1 ;—1; (b) Vertical Step - M,_4 ;; (c) Horizontal Step - M, ;_;.

Since the pathing is limited to these three steps, we can express the number of
sequences stored at (m,n) as D(m,n). The total number of sequences for a whole

table is the summation of possible paths to all coordinates and is given as:

D(i, j). (4.3)

m n

4 7=0

We can reduce the size of the total table. We can reduce the size by disregarding
values we no longer require. This limits the maximum size of the table to D(m,n).
However, we cannot reduce the number of sequences at (m, n). Reducing the number
of sequence at (m,n) would entail reducing the viable paths to said coordinate. With
every such reduction we learn more about the LCS as we learn which path it is not.
Furthermore, learning which path to take reveals the result of the equality check we
use in all protocols.

Kiselman [Kis12] describes the lower- and upper bound for any Delannoy number

as:
3min(z,y) < D(l’,y) < (\/§+ 1)m+y’ (.fll',y) c NQ. (44)

For the square Delannoy number, where D(z, x), the worst case, Kiselman gives the

lviii

CHAPTER 4. PRIVATELY ALIGNING SEQUENCES

bounds as:
3* < D(z,2) < (3+V8)®, z e N, (4.5)

The lower bound is exponential in the smallest input size. This complexity makes
it infeasible to work with in real world scenarios. Especially since in further steps
we would need to consider each possibility.

The method could be useful in scenarios where we compare a short sequence
with a long sequence. However, in most cases, the two sequences will approximately

be of the same length. Figure [£.2] visualises the growth rate of the lower and upper

)) \ 3minw,y L
/ ®(1+\/§)x+y

bounds.

< 6,000

kS

I~

& 4,000 [

Y

S 2,000 [

=)

S

= 0 o

0 " : 5

m O K

Figure 4.2: Depiction the lower and upper bound of the D(m,n).

We argue that the protocols in Protocol [2 and [3] reveal all equal elements, thus
they do not simulate the ideal functionality. In either case the equality function
does not reveal anything to either S or R. In Protocol [2| this is by virtue of the
equality proposed by Nateghizad et al. In Protocol [3] this is by virtue of the
[Homomorphic Encryption| cryptosystem. Thus in the communication, or calculation
step S does not learn anything about the [LCS] Furthermore, both the protocols

send over the last entry of the matrix, M, ,, to R. In both cases the entries in M,, ,,
result in S not learning anything about the[LCS| However, the final information that
S sends to R includes the encryption of all paths. This means that we also include
all the paths that contain equal elements. For the execution of LCS(”badf”,” adfb”)
we get every path containing equal elements. This will include the [LCS|, "adf", and

lix

CHAPTER 4. PRIVATELY ALIGNING SEQUENCES

m
n 5 10 15 20 25
5 0.0003s 0.0082s 0.0795s 0.4314s 1.5400
10 - 1.9162s ME ME ME
15 - - ME ME ME
20 - - - MFE ME
25 - - - - ME

Table 4.1: Timing results in seconds for standard [Longest Common Subsequence|
while storing all possible path. The inputs are two completely distinct strings. In
the table, m gives the length of the first input and n gives the length of the second
input. M E indicates a memory error.

all its subsequences. However, it will also contain the subsequence "b". This is not

part of the [LCS| Thus this will reveal more information than only the [LCS
Protocol [4] does not simulate the ideal functionality since in the post process-

ing step decrypting all results in M, ,, cause R to learn the content of one entire

sequemnce.

4.6.1 Timing

To get the lower bound of the timing for the proposed algorithm we use the normal
[LCS|function. However, we store all possible paths. This means that all our suggested
approaches take at least as long as the timing we present here. Table gives the
timing of different input length using a basic [LCS| implementation. Normal files
contain more than 25 lines. This means that the given values are not realistic. They
illustrate that the suggested methods are not feasible in a real world scenario. The
test machine is equipped with a AMD EPYC 7V12 CPU and 28GB of RAM.

4.6.2 Learning from Equality

To solve the|Longest Common Subsequence|problem, at a certain point every element

of one sequence will be compared to every element in the other sequence. Methods
like the Four Russian’s allow these steps to be part of a pre-computed process, others
do this in place. The equality of two elements dictates the path we take. This means
we cannot circumvent the equality check as given in the Definition 2.2.1] (s; = r;).

As we show earlier, secure equality checking has multiple approaches. These can

Ix

CHAPTER 4. PRIVATELY ALIGNING SEQUENCES

be interactive [NVELIS] or based on a trapdoor functions [LLST20]. We have seen
that this last scheme does not offer the functionality we desire. We wish that S does
not learn the outcome of the equality functions whether they are interactive or not.

In the case of an interactive protocol we see that we can use this property to
construct a protocol that determines the [LCS] this is Protocol 2] Extending this, we
let S determine equality on its own and use this result in decision making, sketched
in Protocols 3l and [l

The problem lies in reducing the size of the final entry in the matrix. We can

minimize this value by excluding certain pathings. If the protocol can disregard irrel-

evant paths we end up with a smaller set of possible|Longest Common Subsequencep.

While we have a third party that can determine the equality of two elements we can-
not solve the problem that we need to make a decision based on the equality result.
This is the case since one party cannot obfuscate the decision path for itself. Thus
in a scenario where one party needs to make a decision based on the result of an
equality test, that party will learn the outcome of the equality test.

In our case we have a binary path. When the result of the equality test is positive
we take a diagonal step, in the case of inequality we go either to the top or to the
left. Consequently, we can learn something about the result of our equality test if
we know something about the pathing we took.

If we can determine the path of the algorithm with a probability greater than

%, we can do the same with the result of the equality and vice versa. Reveaowering

any of this information will help an adversary in determining the [Longest Common|

[Subsequencel Thus, pruning the pathing of the [LCS| will reveal something about the
LCOS

4.7 Conclusion

We propose multiple functions for Secure [Longest Common Subsequencel All of the

function have the same space complexity. The space complexity of these functions
scales with the Delannoy number. The lower bound of the required space is exponen-
tial in the length of the shortest input. This space complexity makes it unsuitable
for real-world applications.

We propose an interactive function that requires S and R to work together for S

to obtain the [LCS| matrix. The two other approaches do not require the cooperation

Ixi

CHAPTER 4. PRIVATELY ALIGNING SEQUENCES

Simulates Fg cs Space Communication Number of ®
Complexity Complexity

Leaks All Equal Elements D(m,n) m-n- EQT-1 m-n
Leaks All Equal Elements D(m,n) 0 m-n-(p—1)
Leaks One Sequence D(m,n) 0 0

Table 4.2: Summary of sLCS functions and their properties. We compare Protocols

, and @

of R for S to obtain the matrix. One approach requires p — 1 homomorphic multi-
plications, where p is the prime order of the message space of encryption scheme £
that supports the homomorphic multiplication. The other non-interactive approach
assumes a post processing step that eliminates the homomorphic multiplication step.
This comes at the cost of revealing one of the input sequences to R.

We argue that non of the functions suggested simulate the ideal functionality
Fsics- The last suggested approach leaks one sequence, the two other suggested ap-
proaches leak all identical elements between the two input sequences. We summarise

the functions and their properties in Table 4.2}

Ixii

CHAPTER 5. SECURE DIFFERENCE ANALYSIS

Chapter 5
Secure Difference Analysis

Autexier bases the proposed function for diff and diff3 on the alignment of two

sequences using [Longest Common Subsequence| (LCS)). In the previous section we

propose multiple methods to determine the [LCS] We also observe that these func-
tions do not support any real-world scenario where we compare files of a larger size.
This section describes what the Secure diff — sDiff — and Secure diff3 — sDiff3 —
should do in an ideal situation. The following section introduce the terminology and

concept further. It is these functionalities that trickle down in the ideal function-

ality of the |Longest Common Subsequence] Since we did not develop any feasible

alignment methods this chapter is limited to describing the desired functionality.

5.1 Ideal Functionality

The secure variants of diff and diff3 are variants of the functions introduced
by Autexier [Autl5]. They aim to determine the result of the functions while not
revealing other information about the input. The inputs for the function that S
executes come from participants p,p’ € P. In the case of diff these are any two
files. In the case of diff3 the two input files share a common origin. This common
origin, o, is a file that directly predates the two inputs provided by p and p’. In both
cases it is possible that p = p'.

The goal of sDiff is for a third-party to determine the difference between two
hidden files. Only R should be able to view the result. Furthermore, R should only
learn the result and nothing else. We use the diff function to create a patch file.

Ideally, sDiff can thus create a secure form of a patch file. Figure [5.1(a)| depicts the

Ixiii

CHAPTER 5. SECURE DIFFERENCE ANALYSIS

Functionality F.pir

Participants: p,p’ € P for the set of
providers P, R C R for the receiver
set R.
Parameters: Difference Function
D :F xF — P, for files from
input-space F and patch files from
output-space P.
Input:
-p:fpelF
-p: fpeF
Output:
- p obtains D(f,, f) if p € R else L
- p/ obtains D(f,, fy) if p € R else L
- R obtains D(f,, fi)

Functionality Fipirs

Participants: p,p’ € P for the set of
providers P, R C R for the receiver
set R.
Parameters: Three-Way Difference
Function D : F x F x F — P, for
files from input-space F and patch
files from output-space P.
Input:
- origin file o.
-p: fp € Fs.t. Patch,
-p fpl € F s.t. Patchog)fp,
Output:
- p obtains D(f,, fy,0) if p € R else L
- p/ obtains D(f,, fr,0) if p' € R else L
- R obtains D(f,, f,,0)

(a)

(b)

Figure 5.1: The Ideal Functionalities for the Secure Difference Analysis. (a) gives
the Ideal Functionality for Secure diff. (b) gives the Ideal Functionality for Secure

diff3.

ideal functionality.

Much like sDiff, sDiff3 should allow a third-party to determine the result of diff3

without learning anything about the content of the input or the output. The result

should only be known to R. Note that function requires a third input. This input is

not necessarily provided by p or p/, this file could already be present on S. Figure

5.1(b)| gives the ideal functionality.

We do not sketch a layout for S as there is no suggested procedure. However, if

we wish to keep using the effective patch composition as provided in Section [3.3.3]

it is likely that we end up with a non-colluding multi-server setting.

Ixiv

CHAPTER 6. CONCLUSION

Chapter 6
Conclusion

This thesis explores multiple techniques required to create a secure repository. Specif-

ically, we introduce and consider the concepts of Secure Patch Composition, Secure

ILongest Common Subsequence| (LCS|), Secure diff, and Secure diff3. Secure vari-

ants of these functions allow a server hosting a [Version Control System| (VCS)) to

perform all necessary function without learning the content it is hosting.

We start in Chapter [3| with introducing the Secure Compose — sCompose — func-
tionality. We continue this chapter by introducing possible approaches to the prob-
lem. We consider two security settings in the suggested approaches. The first security
setting consists of a single server setting, S = {S}. This setting leaves us with two
approaches. The first variant allows for effective composition but leaks all data in
the patch file besides the content of the new lines. The new lines are encrypted using
AES in GCM Mode. The encryption means only the line content is hidden. § still
learns which lines are new lines, which lines are retained lines, and the number of
operations and lines. In a real-world scenario, this approach performs as good as an
unencrypted variant as it does not require any extra steps.

We argue that the second approach in the single server setting simulates the
ideal functionality Fscompose- This approach randomly orders the lines in a patch file
and pads the files to a fixed size. We encrypt this padded and randomly ordered
file using AES in GCM Mode. The encrypted randomly ordered file means that S
does not learn anything about the size of the content or number of operations by
observing the files it receives. Furthermore, the random ordering of the lines means
S cannot derive any information about the location of lines. These properties come

at the cost of effective composition. The composition is the same as concatenation

Ixv

CHAPTER 6. CONCLUSION

in this approach. In a realistic scenario, this approach takes little time to perform
since concatenation is a cheap operation. However, each composition creates a patch
file that is larger by the amount of a padded file. Thus there is a limit to how many
patches we can compose. The limit depends on the size of a padded file.

The second security setting we sketch for sCompose is a two-server scenario.
In this case S = {Sp, Sp}, where Sp and Sp are honest-but-curious non-colluding
servers. Once again, we suggest two scenarios: an unpadded and a padded variant of
the same procedure. The procedure requires the creator of a patch to determine two
random permutations. One permutation operates over the index set of the target
file. The other permutation works over the index set of the origin file. The creator of
the patch uses these permutations to permute the functions that define a patch file.
Consequently, the line numbers in the patch file are now no longer meaningful. They
are random. The only way to obtain the correct patch file is by using the inverses
of the permutation.

The creator of the patch sends the permuted patch description to Sp. They send
the permutation that operates on the target file and the inverse of the permutation
that works over the origin file to Sp. These two servers are non-colluding; thus,
they do not learn the original patch file. To compose two patch files that share an
origin and target file Sp creates a new permutation. For these two patch files, two
permutations operate over the index set of the shared file. By first applying the
permutation where the shared file is the origin file and then the permutation where
it is the target file, we link the two patch files. This composition of the patches is a
new random permutation.

Sp sends this new permutation to Sp. Sp uses this permutation to create the
new function to create the composed patch file. Sp needs to store two permutations
associated with the new composed patch. These permutations are the permutation
of the first patch file that operates over the origin index set and the permutation of
the second patch file that works on the target index set.

The unpadded approach leaks the number of operations and the length of the
files. However, it does not leak the actual location of the operations. The padded
approach does not leak the length of the files. However, the padded version can reveal
the number of lines we retain from the first file to the next when we compose two
files. This means both do not simulate Fscompose- They do reveal minimal information

and allow for an effective composition.

Ixvi

CHAPTER 6. CONCLUSION

In Chapter [] we introduce the concept of Secure [Longest Common Subsequence

— sLCS — and propose three methods to achieve the functionality. We propose one
interactive approach between the server, S, and the receiver, R. The other two
approaches are single-sided on §. All approaches rely on the creation of the dynamic
programming table that solves the [LCS| problem for two given inputs. The first
uses an interactive equality checking protocol. The latter two use homomorphic
encryption and group properties to check for equality.

To hide the length and embedding of the [LCS| from S, we track every possible
path in the dynamic programming table. If we introduce the ability to prune paths,
we argue that we also gain the ability to say something about the equality of two
elements. Disclosing anything about equality will reveal at least the embedding of the
[ILCS| Storing all possible paths has a space complexity that scales exponentially in
the length of the smallest input. This space complexity makes these approaches not
workable in a real-world scenario. We argue that our approaches do not simulate the
ideal functionality Fy,cs. They either leak the content of one of the input sequences,
or they leak all the identical elements between the two sequences.

Finally, in Chapter [5] we introduce the concept of Secure diff and Secure diff3.
These functions rely on a method to align the sequence. Since we did not propose a

workable solution for alignment we only introduce the concept of sDiff and sDiff3.

6.1 Future Work

The work in this thesis is mainly theoretical. It considers necessary functions for a
secure repository, yet it does not provide workable versions of these functions. To
achieve a full secure repository we still require a sCompose function that is effective
and fully simulates the ideal functionality Fscompose. Furthermore, we require sDiff
and sDiff3 functions that facilitate the creation of patch files and allows for merging
of files. Both these functions require a sLCS function that simulates Fg cs and is
usable in a real-world setting.

All these functions are subject to further research. It could be interesting to
evaluate different approaches or changes in the setting. Different approaches to the
[LCS method might prove beneficial in limiting its space complexity. We argue that
such another method should contain a different approach to the equality of the last

elements of two sequence in the [LCS procedure. Limiting the alphabet size might

Ixvii

CHAPTER 6. CONCLUSION

provide insights we could extrapolate in the case where our alphabet is infinite.

Currently, the length of a patch file is equal to the length of the target file. This
equal length property follows from our definition of a patch file that uses retentions
and insertions. In other words, we describe the target file entirely. However, a patch
file is smaller than the target file since the image of the retain function does not
consist of an element from >»*. The image consists of indices from the origin file.
A patch file over plaintext files consists of deletion and insertion. Using deletions
and insertions instead of retentions and insertions generally results in shorter patch
files than the target file. It is an interesting question to see if we can translate this
approach to hidden patch files while maintaining the compose functionality as we
describe.

Finally, we did not propose a method to tackle the problem of sDiff and sDiff3.
It should be the subject of future work to see if, with different approaches, we can

obtain the functionality of these procedures.

Ixviii

BIBLIOGRAPHY

Bibliography

[ABC*15]

[ADKF70]

[Aut15]

[Bon15]

[BSO05]

[CHK20]

[Cim20]

[Cim21]

Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjgsteen,
Angela Jéschke, Christian A. Reuter, and Martin Strand. A guide to fully
homomorphic encryption. Cryptology ePrint Archive, Report 2015/1192,
2015. https://eprint.iacr.org/2015/1192.

Vladimir L’vovich Arlazarov, Yefim A Dinitz, MA Kronrod, and Igo-
rAleksandrovich Faradzhev. On economical construction of the transitive
closure of an oriented graph. In Doklady Akademii Nauk, volume 194,
pages 487-488. Russian Academy of Sciences, 1970.

S. Autexier. Similarity-based diff, three-way diff and merge. Int. J. Softw.
Informatics, 9:259-277, 2015.

Oscar Bonilla. The Advantages and Disadvantages of Monolithic, Multi-
ple, and Hybrid Repositories, 2015.

Cyril Banderier and Sylviane Schwer. Why delannoy numbers? Journal
of Statistical Planning and Inference, 135(1):40-54, 2005. Special issue

on lattice path combinatorics and discrete distributions.

Jung Hee Cheon, Kyoohyung Han, and Duhyeong Kim. Faster boot-
strapping of the over the integers. In Jae Hong Seo, editor, Informa-

tion Security and Cryptology — ICISC 2019, pages 242-259, Cham, 2020.

Springer International Publishing.

Catalin Cimpanu. Intel investigating breach after 20GB of internal doc-
uments leak online. ZDNet, August 2020.

Catalin Cimpanu. Nissan source code leaked online after git repo mis-
configuration. ZDNet, January 2021.

Ixix

https://eprint.iacr.org/2015/1192

BIBLIOGRAPHY

[CLT14]

[CS14]

[DBN+01]

[DGKO07]

[Dwo07]

[FGMO9)

[FSFOS]

|Gol04]

[HM?75]

[Kal05]

[Kis12]

[KMR11]

Jean-Sébastien Coron, Tancréde Lepoint, and Mehdi Tibouchi. Scale-
invariant fully homomorphic encryption over the integers. In Hugo
Krawczyk, editor, Public-Key Cryptography — PKC 201/, pages 311-328,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

Scott Chacon and Ben Straub. Pro Git. Apress, USA, 2nd edition, 2014.

Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence
Bassham, E. Roback, and James Dray. Advanced encryption standard
(aes), 2001-11-26 2001.

Ivan Damgard, Martin Geisler, and Mikkel Krgigaard. Efficient and se-
cure comparison for on-line auctions. In Josef Pieprzyk, Hossein Ghodosi,

and Ed Dawson, editors, Information Security and Privacy, pages 416—
430, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

Morris Dworkin. Recommendation for block cipher modes of operation:
Galois/counter mode (gem) and gmac, 2007-11-28 2007.

Matthew Franklin, Mark Gondree, and Payman Mohassel.
Communication-efficient private protocols for longest common sub-

sequence. Cryptology ePrint Archive, Report 2009/019, 2009.
Inc Free Software Foundation. Version Management with C'VS, 2008.

Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Appli-
cations. Cambridge University Press, USA, 2004.

J. W. Hunt and M. D. Mcllroy. An algorithm for differential file com-

parison. computer science, 1975.

Burt Kaliski. FEuler’s Totient Function, pages 206-206. Springer US,
Boston, MA, 2005.

C. Kiselman. Asymptotic properties of the delannoy numbers and similar

arrays, 2012.

Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing
multi-party computation. Cryptology ePrint Archive, Report 2011/272,
2011. https://eprint.iacr.org/2011/272.

Ixx

https://eprint.iacr.org/2011/272

BIBLIOGRAPHY

[Lev66]

[Lis05]

[LLS*20]

[MPS0)

[NK15|

[NVEL18]

[Pai99]

[SK16]

[Sta21]

Vladimir Tosifovich Levenshtein. Binary codes capable of correcting dele-
tions, insertions and reversals. Soviet Physics Doklady, 10(8):707-710,
February 1966. Doklady Akademii Nauk SSSR, V163 No4 845-848 1965.

Moses Liskov. Fermat’s Little Theorem, pages 221-221. Springer US,
Boston, MA, 2005.

Hyung Tae Lee, San Ling, Jae Hong Seo, Huaxiong Wang, and Taek-
Young Youn. Public key encryption with equality test in the standard
model. Information Sciences, 516:89-108, 2020.

William J. Masek and Michael S. Paterson. A faster algorithm com-
puting string edit distances. Journal of Computer and System Sciences,
20(1):18-31, 1980.

Koji Nuida and Kaoru Kurosawa. (batch) fully homomorphic encryption
over integers for non-binary message spaces. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology — EUROCRYPT 2015,
pages 537-555, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

Majid Nateghizad, Thijs Veugen, Zekeriya Erkin, and Reginald L. La-
gendijk. Secure equality testing protocols in the two-party setting. In
Proceedings of the 13th International Conference on Awvailability, Relia-
bility and Security, ARES 2018, New York, NY, USA, 2018. Association
for Computing Machinery.

Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Jacques Stern, editor, Advances in Cryptology
— FUROCRYPT 99, pages 223-238, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

T. K. Saha and T. Koshiba. Private equality test using ring-lwe somewhat
homomorphic encryption. In 2016 3rd Asia-Pacific World Congress on
Computer Science and Engineering (APWC on CSE), pages 1-9, 2016.

Nick Statt. Cyberpunk and witcher hackers auction off stolen source code

for millions of dollars. The Verge, February 2021.

Ixxi

BIBLIOGRAPHY

[Sul03|

[Warl7]

[ZCL*+19]

Robert Sulanke. Objects counted by the central delannoy numbers. Jour-
nal of Integer Sequences, 6, 05 2003.

Tom Warren. Microsoft confirms some windows 10 source code has
leaked. The Verge, June 2017.

Kai Zhang, Jie Chen, Hyung Tae Lee, Haifeng Qian, and Huaxiong Wang.
Efficient public key encryption with equality test in the standard model.
Theoretical Computer Science, 755:65-80, 2019.

Ixxii

	Introduction
	Motivation
	Research Questions and Objective
	Contributions
	Structure

	Background and Preliminaries
	Sequence
	Longest Common Subsequence
	LCS using "Four Russians"

	File
	Difference Analysis
	Three-way Difference Analysis

	Patch Files
	Retain
	Insert
	Composition of Patch Files
	Effective Patch and Composition

	Delannoy Number
	Encryption
	Homomorphic Encryption
	Security Model

	Secure Patch Composition
	Security Setting and Ideal Functionality
	Single Server
	Hiding Line Content
	Hiding All Content
	Analysis

	Non-Colluding Two-Servers
	Hiding Line Numbers
	Hiding File Size
	Composition
	Analysis

	Conclusion

	Privately Aligning Sequences
	Security Setting and Ideal Functionality
	Secure LCS Calculation
	Sequence Encryption
	Interactive Protocol
	Interactive Equality
	Protocol

	Non-Interactive Protocol
	Non-Interactive Equality
	Protocol

	Analysis
	Timing
	Learning from Equality

	Conclusion

	Secure Difference Analysis
	Ideal Functionality

	Conclusion
	Future Work

